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Apoptosis-inducing factor (AIF) exhibits reactive oxygen

species (ROS)-generating NADH oxidase activity of un-

known significance, which is dispensable for apoptosis.

We knocked out the aif gene in two human colon carci-

noma cell lines that displayed lower mitochondrial com-

plex I oxidoreductase activity and produced less ROS, but

showed increased sensitivity to peroxide- or drug-induced

apoptosis. AIF knockout cells failed to form tumors in

athymic mice or grow in soft agar. Only AIF with intact

NADH oxidase activity restored complex I activity and

anchorage-independent growth of aif knockout cells, and

induced aif-transfected mouse NIH3T3 cells to form foci.

AIF knockdown in different carcinoma cell types resulted

in lower superoxide levels, enhanced apoptosis sensitivity

and loss of tumorigenicity. Antioxidants sensitized

AIF-expressing cells to apoptosis, but had no effect on

tumorigenicity. In summary, AIF-mediated resistance to

chemical stress involves ROS and probably also mito-

chondrial complex I. AIF maintains the transformed

state of colon cancer cells through its NADH oxidase

activity, by mechanisms that involve complex I function.

On both counts, AIF represents a novel type of cancer drug

target.
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Introduction

A single X-linked mammalian gene aif encodes a 57-kDa

mitochondrial flavoenzyme, apoptosis-inducing factor,

homologues of which are present in human, mouse,

Caenorhabditis elegans and probably yeast (Susin et al,

1999; Joza et al, 2001; Lipton and Bossy-Wetzel, 2002;

Wissing et al, 2004) apoptosis-inducing factor (AIF) is

released from mitochondria to the cytoplasm of many

mammalian cells induced to undergo apoptosis, where it

combines with cyclophilin A to form an active DNase,

translocates to the nucleus and contributes to nuclear DNA

fragmentation and chromatinolysis (Loeffler et al, 2001;

Cande et al, 2004a). This death pathway is conserved in

C. elegans, where the AIF homologue WAH-1 functionally

associates with the mitochondrial DNA endonuclease CPS-6/

Endo G. Inhibition of WAH-1 delayed the normal progression

of apoptosis during development (Wang et al, 2002).

Knockout of the aif gene in mouse embryonic stem (ES)

cells is lethal, being associated with a defect in sculpting

of the early embryo and reduced susceptibility of the cells

to serum withdrawal (Joza et al, 2001). Thus, AIF/WAH-1

appears to play crucial roles in programmed cell death during

early animal development.

The crystal structures of mouse and human AIF revealed

two important regions: a domain required for DNA fragmen-

tation (a putative DNA-binding site) and a domain with

homology to a bacterial NADH-dependent ferredoxin reduc-

tase that is structurally similar to the eukaryotic glutathione

reductase family of enzymes (Mate et al, 2002; Ye et al, 2002).

In functional in vitro assays, AIF acts as an NADH oxidase,

accepting electrons from NADH, and transferring them to

molecular oxygen to form the superoxide (O2
�) free radical,

which subsequently undergoes dismutation to H2O2

(Miramar et al, 2001). The NADH oxidase and DNA fragment-

ing activities of AIF are completely independent, suggesting

that the NADH oxidase activity of AIF is not required for

apoptosis (Ye et al, 2002).

The first evidence that AIF has a protective function in

some cell types came from studies on the Harlequin mutant

mouse, which has an 80% reduction in AIF, but appears

normal except for premature neurodegeneration and in-

creased peroxide sensitivity in specific subsets of neurons

in adult animals (Klein et al, 2002). The precise mechanism

of action of AIF in free radical scavenging and counteracting

oxidative stress in this mouse model remains to be estab-

lished. More recently, it has been shown that a redox-active

domain of AIF and reduced glutathione are required for the

inhibition of cytoplasmic stress granule formation under

conditions of chemical stress, suggesting that AIF is involved

in an adaptive response (Cande et al, 2004b). Interestingly,

AIF deficiency compromises oxidative phosphorylation

(OXPHOS) by inhibiting respiratory chain complex I in vitro

and in vivo, revealing a ‘life’ function for AIF (Vahsen et al,

2004). However, the mechanistic connections between the

redox activity of AIF, OXPHOS and cell survival remain

unclear.

Here, we investigate the role of the NADH oxidase activity

of AIF by knocking out the gene in different human colon

cancer cell lines, and analyzing the phenotype of AIF knock-

out cells re-expressing either AIF or mutant AIF deficient in

NADH oxidase activity.
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Results

Generation of AIF-deficient carcinoma cell lines

We generated viable AIF-null human colon carcinoma cell

lines by modifying the single X-linked locus of the human aif

gene using bipartite promoter-less targeting vectors (Jallepalli

et al, 2001) (Figure 1A). The human colon cancer cell lines

HCT116 and DLD-1 are near diploid with a single X chromo-

some and have been used extensively for gene targeting

(Sedivy et al, 1999). aif�/y knockout clones were identified

by PCR analysis of genomic DNA using two unique sets of

primers. One primer set detected only the correct integration

of the targeting vector reporter gene (hygromycin, hyg)

together with the deletion of the first exon, while the other

set detected only the original configuration of the human aif

gene (Figure 1B and C). Lack of aif expression in two

independent clones derived from both cell lines was further

confirmed by RT–PCR of the exon 1–exon 2 boundaries of aif

mRNA (Figure 1D). Western blot analysis demonstrated AIF

protein in the isogenic control cell lines and the complete

absence of AIF in all knockout cell lines (Figure 1E).

To extend our studies to other tumor types, we generated

stable AIF knockdown cell lines via siRNA in colon cancer

cell line SW480, breast cancer line MCF-7 and lung cancer

cell line A549. Two independent siRNA knockdown clones

for each cell line showed 50–80% reduction in AIF protein

(Supplementary Figure S1A).

Decreased superoxide (O2
�) and reactive oxygen species

in AIF-deficient tumor cell lines

AIF has been reported to exhibit in vitro NADH oxidase

activity that generates O2
� and subsequently H2O2 by dismu-

tation of O2
� (Miramar et al, 2001), and therefore the lack of

AIF might be expected to lower reactive oxygen species (ROS)

levels. On the other hand, AIF has been reported to behave as
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Figure 1 Generation of AIF knockout cell lines by homologous recombination. (A) Schematic representation of bipartite promoter-less
targeting vector. Hyg, hygromycin; p-A, poly(A). (B) Two different primer pairs for genomic DNA PCR assay for correct gene targeting. (C)
Genomic DNA from HCT116 and DLD-1 cells was analyzed by PCR using the primers described in panel B. As a control, the wild-type locus of
AIF was amplified together with the diagnostic PCR for integration of the promoter-less Hyg-pA cassette. hvt and dvt refer to vector controls for
HCT116 and DLD-1 cells, respectively. hKO and dKO refer to HCT116 and DLD-1 knockout cells, respectively. (D) aif mRNA-specific RT–PCR
analysis of exon 1–exon 2 boundary confirming lack of aif expression in HCT116 and DLD-1 clones. (E) Western blot analysis with human AIF
antibodies to confirm the absence of AIF in knockout cells. Hsp60, a mitochondrion-specific protein, was used as a loading control.
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an antioxidant protein that suppresses oxidative stress in

neurons (Klein et al, 2002). AIF is required for the proper

assembly or function of mitochondrial complex I (Vahsen

et al, 2004), and its loss might affect ROS levels as a result of

altered leakage of O2
� from a defective complex I. To explore

these possibilities in carcinoma cells, we first assessed in-

tracellular O2
� rigorously by employing three different meth-

ods to overcome limitations associated with measuring the

short-lived O2
� radical with one method only. Using assays for

aconitase (which is inhibited by O2
�), independent clones of

both AIF knockout cell lines exhibited higher aconitase

activity than the parental and vector control cell lines,

reflecting 20–40% less intracellular O2
� (Figure 2A). Similar

results were obtained when O2
� production was assessed with

lucigenin (Figure 2B) and NBT reduction (data not shown).

Similar decreases in intracellular O2
� were also observed in

the three different AIF knockdown cell types (Supplementary

Figure S1B). Consistent with the O2
� data, we demonstrated

corresponding decreases in ROS in both AIF knockout colon

cancer cell lines (Figure 2C) and in AIF knockdown colon and

breast tumor cell lines (Supplementary Figure S1C). Thus

in human carcinoma cells, AIF contributes significantly to
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Figure 2 Reduction in O2
� and ROS in AIF knockout cell lines. Relative O2

� levels were measured using aconitase (A) and lucigenin (B) assays
in AIF knockout (hKO, dKO) clones derived from HCT116 and DLD-1 cell lines, and are means7s.d. of three independent experiments (note
that increased aconitase activity but decreased lucigenin activity both reflect reduction in O2

�). (C) Flow cytometry analysis of relative
intracellular ROS levels detected by measuring oxidized dichlorodihydrofluorescein diacetate (H2DCFH-DA) in two independent knockout
clones compared to the wild-type HCT116 and DLD-1 cells. Values represent % of AIF knockout cells having decreased ROS compared to wild-
type cells. Graphs are representative of three independent measurements.
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intracellular O2
�, either directly through its NADH oxidase

activity or indirectly through leakage of O2
� from AIF-

mediated mitochondrial complex I function (or both).

Either way, the generated O2
� would undergo dismutation to

H2O2 in most cell lines, accounting for the elevated ROS.

AIF-deficient cell lines show increased sensitivity

to DNA-damaging agents and oxidative stress

Surprisingly, all AIF knockout clones derived from HCT116

and DLD-1 showed a three- to five-fold increased sensitivity

to the DNA-damaging agents campthothecin and etoposide,

as well as the oxidative stress agents H2O2 and t-butylhydro-

peroxide, as compared to the AIF-expressing cell lines (Figure

3A and B). Likewise, aif siRNA knockdown colon, lung and

breast carcinoma cell lines were markedly more sensitive to

etoposide and t-butylhydroperoxide than the parental cell

lines (Supplementary Figure S2A and B). Evaluation of

apoptosis using caspase-3 assays and annexin-V or morpho-

logical staining using Sytox-Hoechst dyes confirmed the

greatly increased sensitization of both AIF knockout colon
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Figure 3 Increased sensitivity of AIF knockout cell lines to cancer drugs and oxidative stress. (A) Cytotoxicity assays for HCT116 wild-type and
vector control (hvt) cells, and counterpart AIF knockout cell lines (hKO1, hKO2) after exposure to 60 mM campthothecin, 60 mM etoposide,
500 mM hydrogen peroxide, 25 mM t-butylhydroperoxide, 25 ng/ml TRAIL, 0.5mg/ml anti-FAS or 4 days serum starvation. (B) Cytotoxicity
assays for DLD-1 wild-type and vector control (dvt) cells, and counterpart AIF knockout clones (dKO1, dKO2) after exposure to 5 mM
campthothecin, 2.5 mM etoposide, 250 mM hydrogen peroxide, 12.5mM t-butylhydroperoxide, 25 ng/ml TRAIL, 0.5mg/ml anti-FAS or 4 days
serum starvation. (C) Cytotoxicity assays for HCT116 cells pre-exposed to EUK-8 (20 mM) and NAC (5 mM) overnight prior to treatment with
60mM etoposide or 25mM t-butylhydroperoxide. In panels A–C, surviving cells were detected by incubation with MTS/PES (Promega Cell Titer
Proliferation Assay) and expressed as a % of untreated cells and are means7s.d. of three independent experiments.
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carcinoma cell lines to drug and oxidative stress-induced

apoptosis (Figure 4A–C). In contrast, the knockout cells

showed no alterations in cell death sensitivity with TRAIL,

anti-Fas or serum starvation (Figure 3A and B), or with

staurosporine or actinomycin D (data not shown).

To further investigate the link between decreased O2
�/ROS

and increased sensitivity to DNA-damaging agents and

oxidative stress, we exposed parental HCT116 cells to the

general antioxidant N-acetylcysteine (NAC) and the MnSOD

mimetic (O2
� scavenger) EUK-8, which decreased intracellular

ROS by 23% (75%) and O2
� by 30% (76%), respectively.

This is comparable to the reduction in O2
�/ROS observed

in AIF-deficient cells (Figure 2A–C). Exposure of HCT116 cells

pretreated with NAC or EUK-8 to etoposide or t-butylhydro-

peroxide resulted in increases in sensitivity in the 1.5- to 3-

fold range (Figure 3C), which reiterates the effects of curbing

AIF expression, and establishes a closer link between a pro-

oxidant state and resistance to apoptosis in these tumor cells.

Dramatic loss of tumorigenicity of AIF-deficient

carcinoma cell lines

To assess tumorigenicity, we grew the AIF knockout cells in

anchorage-independent conditions using the standard soft

agar assay. Remarkably, the four independent AIF knockout

clones derived from HCT116 and DLD-1 cells showed a

substantial 5- to 20-fold decrease in colony growth in soft

agar compared to the AIF-expressing cells (Figure 5A and B).

Comparable large decreases in soft agar colony formation

were observed with AIF siRNA knockdown clones from the

colon, lung and breast cancer cell lines (Supplementary

Figure S2C). However, the antioxidant NAC and the O2
�

scavenger EUK-8 both failed to curb growth of HCT116 or

DLD-1 cells in soft agar at concentrations that cause a 30% or

greater reduction in ROS (data not shown). Subsequently, we

injected the HCT116 and DLD-1 wild-type and AIF knockout

cells subcutaneously into nude mice to determine the in vivo

tumorigenicity of the AIF knockout cell lines. The two

independent clones from both knockout cell lines exhibited

dramatic reduction or absence of tumor growth in vivo

compared to the wild-type and vector control cell lines,

even when the AIF-expressing and knockout cells were

injected on opposite flanks of the same animal (Figure 5C).

Measurements of tumor weight and volume showed an over-

all 6- to 10-fold decrease in tumor sizes for the AIF knockout

cells (Figure 5D). These data demonstrate a dramatic loss of

tumorigenicity of AIF-deficient carcinoma cells that does not

appear to depend on an overall reduction in cellular ROS.

Deficiency in mitochondrial complex I in AIF knockout

cells

As previously reported for ES and HeLa cells (Vahsen et al,

2004), the absence of AIF in HCT116 and DLD-1 cells resulted

in partial reduction (HCT116) or loss (DLD-1) of several

complex I proteins (Figure 6A). In agreement and as measured

by three independent assays, mitochondrial complex I activity

(an indirect indicator of AIF function) was 40–60% lower

in AIF knockout HCT116 and DLD-1 cells (Figure 6B and

Supplementary Figure S3). In contrast, citrate synthase activity,

which assesses mitochondrial redox status independently of

OXPHOS, was unchanged in independent clones representing

both AIF knockout cell lines (Figure 6C). These results indicate

serious defects in complex I in AIF-null colon cancer cell lines.

NADH oxidase activity of AIF is required to restore

tumorigenicity and complex I activity in AIF knockout

cells

Exhaustive attempts to generate stable knockout cell lines re-

expressing AIF were unsuccessful. We attributed this to the
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pro-apoptotic property of AIF, since we found that over-

expressed AIF was not localized only to mitochondria, but

distributed overwhelmingly in the cytoplasm, where it can

readily translocate to the nucleus and initiate DNA degrada-

tion (data not shown). A similar phenomenon was reported

in HeLa cells expressing exogenous AIF in which mitochon-

drial AIF leaked spontaneously into the cytoplasm on

long-term culture (Loeffler et al, 2001). To circumvent the

apoptotic function of AIF and test the requirement for its

NADH oxidase activity in tumorigenicity, we stably expressed

two different classes of mutant AIF-GFP molecules in the

AIF knockout cell line hKO1 derived from HCT116. One

class had mutations in one or other of the (DNA-binding)

domains known to be required for AIF-mediated apoptosis

(mDNA1 and mDNA2; Figure 7A). The other class denoted

‘double mutants’ had the DNA-binding mutations as well

as mutations in two amino acids implicated in NADH bin-

ding (mDNA1 plus NADH mut; Figure 7A), which compro-

mised the NADH oxidase function of AIF (Supplementary

Figure S4) (Mate et al, 2002).

Independently isolated clones of all these various mutants

gave similar levels of mitochondrial AIF-GFP expression in
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aif�/y HCT116 cells (Figure 7B). The nonapoptotic DNA-

binding mutants (‘DNA muts’) were able to restore ancho-

rage-independent growth in soft agar comparable to parental

HCT116 cells, which is in sharp contrast to the GFP control or

the double mutants (‘NADH muts’) harboring amino-acid

substitutions in the NADH-binding domain as well as in the

DNA-binding domain (Figure 7C). Mitochondrial complex I

proteins as well as complex I activity (measured by two

methods) were re-established in aif�/y HCT116 cells stably

transfected with the DNA-binding mutants, but not with the

double mutants deficient in NADH binding or with GFP alone

(Figure 7D and E, and Supplementary Figure S5A). Similar to

the independent clones, recovery of colony formation in soft

agar was observed with pools of aif�/y HCT116 cells stably re-

expressing DNA-binding mutants, but not the double mutants

defective in NADH binding (Supplementary Figure S5B and

C). These data altogether show that NADH oxidase activity of

AIF is necessary for its tumorigenic properties and important

for mitochondrial complex I activity in HCT116 cells.

NADH oxidase activity of AIF is required for foci

formation in NIH3T3 cells

To further investigate whether AIF has transforming proper-

ties, we overexpressed the various AIF-GFP mutants in the

premalignant mouse cell line NIH3T3, and selected stable cell

lines that synthesized similar levels of AIF-GFP protein

(Figure 8A). NIH3T3 cells transfected with the non-apoptotic

DNA-binding mutants mDNA1 and mDNA2 formed obvious

foci, which were 5- to 10-fold higher in number compared

with cells transfected with either GFP alone or the double

mutants with compromised NADH oxidase activity (Figure

8B and C). NIH3T3 cells transfected with parental AIF

coupled to GFP did not form significantly more foci than

GFP-expressing cells with background levels of foci
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(Figure 8C). Fluorescence microscopy demonstrated 100%

colocalization of AIF-GFP mutants (but not GFP alone) with

the foci (Figure 8D). These experiments (and those involving

reintroduction of aif into AIF knockout HCT116 cells;

Figure 7) suggest that AIF has latent transforming properties

revealed either by artificial mutagenesis or inherent suppres-

sion of its pro-apoptotic function in tumor cells. These latent

transforming properties are a reflection of the involvement of

AIF in the maintenance of tumorigenicity of established

cancer cells. Moreover, the NADH oxidase activity of AIF is

required for foci formation in NIH3T3 cells.

Discussion

AIF contributes to pro-oxidant state of carcinoma cells,

and NADH oxidase activity of AIF is important for

mitochondrial complex I activity

Dying neurons of the AIF-deficient Harlequin mutant mouse

exhibited increased oxidative stress, and it was proposed AIF

acts as a free radical scavenger (Klein et al, 2002). No

differences in oxidative damage or ROS levels were found

in wild-type and aif�/y mouse ES cells, and it was concluded

that AIF does not behave as an antioxidant protein in these

cells (Vahsen et al, 2004). In contrast, we showed that

knockout or knockdown of the aif gene in tumor cell lines

of various tissue origins generally resulted in a marked

reduction in both O2
� and ROS levels. AIF contributes to the

activity of mitochondrial complex I and consequently to

energy production via OXPHOS (Vahsen et al, 2004). In

agreement, we found that complex I activity was much

reduced in AIF knockout cells, but was restored with stable

transfection of aif cDNA encoding mutant AIF lacking pro-

apoptotic function. Complex I activity was not, however,

restored with NADH-binding mutants of AIF, indicating that

the NADH oxidase activity of AIF is important for complex I

function. Thus, AIF normally contributes a significant

amount of O2
� in various carcinoma cell types, which could

be derived directly from the NADH oxidase activity of AIF

(Miramar et al, 2001) or indirectly as a result of AIF-depen-

dent complex I activity causing leakage of O2
� from the

respiratory chain (or both) (Vahsen et al, 2004).

AIF suppresses apoptosis of carcinoma cell lines—role

of a pro-oxidant state and complex I

We showed that AIF-deficient cell lines (representing colon,

breast and lung tumors) were all sensitized to apoptosis

induced by peroxides and some cancer drugs. We found no

evidence for an essential cell death promoting function for
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AIF in carcinoma cells; on the contrary, AIF appears to

suppress cell death in the carcinoma cell types we tested.

Although much evidence exists for an evolutionarily con-

served pro-cell death function for AIF in development (Joza

et al, 2001; Wang et al, 2002), and for a proapoptotic signaling

role for AIF in nuclear chromatinolysis (Cande et al, 2004a),

it is likely that in some scenarios, the survival function of AIF

is dominant over its death-inducing activity. Consistent with

these conclusions and our results, only certain neurons in the

AIF-deficient Harlequin mouse were more prone to H2O2-

induced cell death (Klein et al, 2002). Thus, the precise

involvement of AIF in regulating the life–death balance may

be rather specific for the cell type and death inducer.

How might a reduction in intracellular ROS (especially O2
�)

be reconciled with the increased susceptibility of AIF-defi-

cient tumor cells to stress-induced apoptosis that we demon-

strated? Physiological levels of some ROS, particularly O2
� and

H2O2, are variously required for cell adhesion, immune

functions and certain growth factor-dependent survival path-

ways (Droge, 2002; Reth, 2002; Finkel, 2003). Many tumor

cells exist in a pro-oxidant state that is not necessarily

detrimental and does not equate with lethal oxidative stress

(Cerutti, 1985; Szatrowski and Nathan, 1991; Oberley, 2002;

Go et al, 2004). Thus, AIF-negative transformed cells may be

more vulnerable to stress if, for example, lower O2
� (and

consequently lower H2O2) lessens survival signaling

mediated by Ras, NF-KB or AP-1 (Irani et al, 1997; Gupta

et al, 1999; Finkel, 2003). It is known that modest reductions

in ROS (O2
� in particular) can promote apoptosis of diverse

tumor cell types (Clement and Stamenkovic, 1996; Lin et al,

1999; Pervaiz et al, 1999; Vaquero et al, 2004). NAD(P)H

oxidases are usually the source of protective ROS in these

reports, which is in line with our findings (Pervaiz et al, 2001;

Clement et al, 2003; Vaquero et al, 2004). In our study, the

antioxidant NAC (which reduced ROS) and a SOD mimetic

(which reduced O2
�) both strongly enhanced drug- or per-

oxide-induced apoptosis of AIF-expressing cells.

Deficiency in mitochondrial respiratory chain complex I

(confirmed in the present study) and consequent dependence

on the less efficient anaerobic ATP generation (Vahsen et al,

2004) provide another not necessarily mutually exclusive

explanation for the raised sensitivity of AIF-deficient carci-

noma cells to chemical stress-mediated cell death. OXPHOS

deficiencies in animals can lead to cell death, particularly in

energy demanding cells (Klein et al, 2002; Atorino et al, 2003;

Vahsen et al, 2004). Therefore, tumor cells, which are heavily

reliant on mitochondrial ATP production, may be more vul-

nerable to drug and oxidative stress when AIF is absent.

Moreover, cells lacking complex I are less able to effect

mitochondrial detoxification of H2O2 (Atorino et al, 2003;

Zoccarato et al, 2004), which likely contributes to the in-

creased peroxide sensitivity of AIF-deficient cells in our study.

In sum, our findings suggest that AIF helps to counteract

chemical stress by mechanisms dependent on a pro-oxidant

state and probably also a properly functioning mitochondrial

complex I.
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AIF maintains the transformed state via its NADH

oxidase activity—role of complex I

We found that AIF knockout clones from two distinct colon

cancer cell lines, differing in p53 and oncogenic H-ras status,

displayed very similar properties characteristic of the loss or

reversal of the transformed state. These are lack of ancho-

rage-independent growth in soft agar and extremely poor

development of tumors in athymic nude mice. The failure

of anchorage-independent growth of AIF-deficient cells was

confirmed by siRNA knockdown in SW480 colon carcinoma

cells and representative lung and breast carcinoma cells.

Anchorage-independent growth was only restored in AIF

knockout HCT116 cells by AIF mutants with intact NADH-

binding domains. Thus, AIF maintains the tumorigenicity of

various carcinoma cell types regardless of p53 function or

oncogenic H-ras, and the NADH oxidase activity of AIF is

essential for maintaining the transformed state of HCT116

colon carcinoma cells.

NIH3T3 cells transformed with the non-apoptotic AIF

mutant formed foci in culture, whereas NIH3T3 cells trans-

formed with AIF harboring deleterious mutations in both the

pro-apoptotic and NADH-binding domains did not, which

provides additional evidence that the NADH oxidase activity

of AIF functions in cancer. Overall, the ability of transfected

DNA-binding mutants of AIF (but not unmodified AIF) to

stimulate foci formation in nonmalignant NIH3T3 cells and

generate soft agar colonies in AIF knockout HCT116 cells

indicates a latent transforming effect of AIF that is a reflection

of its important role in maintaining the transformed state.

How does the NADH oxidase activity of AIF contribute to

the transformed phenotype? There is ample evidence that a

pro-oxidant state is associated with the development and

maintenance of the transformed phenotype of many tumors,

but the source of ROS is unknown (Cerutti, 1985; Szatrowski

and Nathan, 1991; Dreher and Junod, 1996; Irani et al, 1997;

Ha et al, 2000; Oberley, 2002). One possible source is the

superoxide-generating Nox1 NAD(P)H oxidase, a Ras-induci-

ble gene that is functionally required for oncogenic Ras-

mediated transformation of fibroblasts and maintenance of

their malignant phenotype (Suh et al, 1999; Lambeth, 2004;

Mitsushita et al, 2004). Dismutation of O2
� to H2O2 was

proposed to mediate the increased cell growth and transfor-

mation caused by nox1 overexpression (Arnold et al, 2001).

In our study, although reduction in ROS correlated with

loss of tumorigenicity, both O2
� and ROS scavengers failed to

block tumorigenicity at concentrations that significantly re-

duced cellular ROS, which argues against a prominent role for

ROS in maintaining the transformed state of colon cancer

cells. Alternatively, complex I function might be linked to

tumorigenicity, which is supported by our data showing that

the NADH oxidase activity of AIF is required both for full

complex I activity and for the transformed state. Interestingly,

complex I has been linked to carcinogenesis, since the

classical specific complex I inhibitor, rotenone, is known to

potently block the formation of spontaneous or chemically

induced carcinomas of the tongue, liver and colon in rodents

(Cunningham et al, 1995; Yoshitani et al, 2001; Tanaka et al,

2002, and references therein).

Together, our data and these considerations suggest that

AIF NADH oxidase-dependent complex I function may be

important for tumorigenicity in carcinoma cells rather than

ROS per se.

Inhibitors of AIF as potential cancer drugs?

Targeting mitochondrial AIF in cancer is attractive. First, the

enhanced rates of glucose uptake and glycolysis of trans-

formed cells enable small molecule inhibitors to accumulate

at higher concentrations in the mitochondria of cancer cells

(Don and Hogg, 2004). Second, blocking the NADH oxidase

activity of AIF should leave its extramitochondrial pro-apop-

totic function intact (Ye et al, 2002). Third, whereas in our

study an incomplete reduction in AIF expression inhibited

anchorage-independent growth, an 80% reduction in AIF

in the Harlequin mouse had no adverse effects, except in a

subset of neurons and in the retina in the adult animal (Klein

et al, 2002). Therefore, specific inhibitors of the NADH

oxidase function of mitochondrial AIF that do not cross the

blood–brain barrier should be considered as a novel approach

to the therapy of colorectal cancers and other carcinomas. We

speculate that inhibitors of the NADH oxidase activity of AIF

would be differentially toxic to tumor cells and both sensitize

colon cancer cells to cancer drugs and block or reverse their

tumorigenicity regardless of their p53 or H-ras status.

Materials and methods

Cell culture and materials
HCT116 and DLD-1 colon carcinoma cells were maintained in
McCoy’s 5A Medium (Sigma-Aldrich), SW480 colon carcinoma
cells and NIH3T3 cells in DMEM (Sigma-Aldrich) and A549 colon
carcinoma cells and MCF7 breast carcinoma cells in RPMI medium.
All media were supplemented with 10% fetal bovine serum (FBS;
HyClone, Logan, UT) and penicillin (100 U/ml) and streptomycin
(100 mg/ml) (Sigma-Aldrich).

Inactivation of the human aif gene by homologous
recombination
Gene targeting in diploid male cell lines HCT116 and DLD-1 via
homologous recombination has been described previously (Sedivy
et al, 1999). We utilized this strategy to modify the single X-linked
locus of the human aif gene by adapting the design for promoter-
trap vectors (Sedivy and Dutriaux, 1999) in construction of the
targeting vector. Briefly, PCR amplifications of a 0.6 kb region
upstream of exon 1 and 5.2 kb region downstream of exon 1 from
the human aif locus of HCT116 genomic DNA were cloned into the
pGEM-T vector (Promega, Madison, WI). Exon 1 was replaced by
the hyg gene (with a polyadenylation signal) exactly at the start
codon of the human aif gene (Figure 1). To further reduce
background selection of hygromycin-resistant clones due to
nonhomologous recombination, the bipartite method was utilized
(Jallepalli et al, 2001). The conventional promoter-trap vector
described above was digested with Mlu1, SacII and Pst1 (New
England Biolabs, Beverly, MA) to generate vectors with overlapping
regions of the truncated hyg gene. The vectors were gel-purified and
transfected at 1mg/106 HCT116 or DLD-1 cells via electroporation
using the Bio-Rad Gene Pulser system (250 V, 960mF). Transfected
cells were plated at 103 cells/well in 96-well plates and selected in
McCoy’s 5A medium (Sigma-Aldrich) and 0.3 mg/ml hygromycin
(Clontech) for 2–3 weeks. The 96-well plates were screened for
individual clones, which were isolated and analyzed by PCR
analysis of genomic DNA using the following primers: PgAFA: TTG
GGT GGG AAA GAG CCG GCA ACT GGT AAA AG; Hyg-Rev: AGA
TTC TTC GCC CTC CGA GAG CTG CAT CAG GT. Candidate aif�/y

clones were confirmed by additional PCR analysis for the loss of the
950 bp wild-type junctions with the following primers: primer A:
GAG TCT GCG TAA TGT GCG TGT GAA GAG AGA CTG G; primer B:
TTG CCT GGA ATG GGT CAG TCA CCT GGG AG. To further validate
gene targeting of the human aif gene, we analyzed clones using RT–
PCR by preparing oligo-dT primed cDNA from clones and analyzed
with the following mRNA specific PCR primers for AIF and GAPDH:
AFRTA: CGG TCG CCG AAA TGT TCC GGT GTG GAG; AFRTB: ACG
CGG CCT TTT TCT GTT TCT GTT CTG G; GPDA: CCA ATA TGA TTC
CAC CCA TGG C; GPDB: TTC TCC ATG GTG GTG AAG AC. Clones
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negative for aif mRNA were analyzed for protein expression using
Western blotting.

Generation and transfection of AIF mutants
The pEGFP-C1 vector (Clontech) alone and vector containing the
human aif coding region in-frame with gfp cDNA were routinely
transfected into 2�106 cells using Fugene 6 (Roche) transfection
reagent. Stable expressing cells were selected using 1 mg/ml G418
(geneticin; Invitrogen). Mutagenesis of aif was performed using the
transformer site-directed mutagenesis kit (Clontech). Mutations
introduced were as follows: mDNA1: K255A, R265; mDNA2: K510A,
K518A; mDNA1N: K255A, R265A, T263A, V300A; mDNA2N:
K510A, K518A, T263A, V300A (Mate et al, 2002; Ye et al, 2002).

Western blot
Western blotting was performed with 10 mg protein as described
(Towbin et al, 1979) using anti-AIF polyclonal antibody (N-1,
1:2000) (QED Biosciences, San Diego, CA) or anti-GFP polyclonal
antibody (Clontech) and horseradish peroxidase-conjugated
goat anti-rabbit IgG (New England Biolabs) as secondary probe.
The transfer conditions were 10 mM NaHCO3, 3 mM NaCO3 and
20% methanol pH 9.9 for AIF, and 192 mM glycine, 20% methanol
and 25 mM Tris pH 8.3 for complex I proteins and GFP. All blots
were washed with phosphate-buffered saline and 0.5% Tween 20
(Sigma-Aldrich) and developed using enhanced chemiluminescence
(Amersham Biosciences).

Aconitase activity and lucigenin assays for O2
�

O2
� measurement using the aconitase assay was as described

(Gardner et al, 1995). A total of 106 cells were lysed using M-PER
(Pierce, Rockford, IL) solution and protein concentration measured
using Bio-Rad protein assay solution. A 30mg portion of proteins
was incubated with 50 mM Tris–HCl pH 7.4, 0.6 mM MnCl2, 20 mM
NADPþ, 250 mM sodium citrate pH 7.0 and 1 U isocitrate
dehydrogenase (Sigma-Aldrich) in a 200 ml reaction volume.
Aconitase activity was quantified by measuring the rate of NADPH
formation during citrate isomerization to isocitrate at 340 nm using
a TECAN microplate reader (Maennedorf, Switzerland) and
expressed as mU/mg protein, where mU is nmol/min computed
from the NADPH molar extinction coefficient of 6.22 mM�1 cm�1.
Lucigenin-based chemiluminescence measurement of intracellular
O2
� has been described (Clement and Stamenkovic, 1996). A total of

2�106 cells were lysed in 400ml ATP-releasing solution (Sigma-
Aldrich) and pelleted at 12 000 g. Together with the supernatant,
100 ml of 850mM lucigenin (Sigma-Aldrich) was immediately added
and chemiluminescence was measured for 20 s using a Turner TD-
20e Luminometer. Data are expressed as relative light units/s and
normalized against total protein content.

Flow cytometric analysis of intracellular ROS
Intracellular ROS levels were determined by staining with H2DCFH-
DA (Molecular Probes, Oregon), which is oxidized to dichloro-
fluorescein (DCF) by ROS. Cells were exposed to 5mM H2DCFH-DA
at room temperature for 1 h, analyzed by flow cytometry using a
Becton Dickinson FACScan machine and analyzed using the
CellQuest program.

Cytotoxicity and apoptosis assays
A total of 5�103 cells were plated in 96-well plates and exposed to
different concentrations of drugs: etoposide, campthothecin,
staurosporine, doxorubicin and actinomycin D (Sigma-Aldrich);
oxidative stress agents t-butylhydroperoxide and hydrogen peroxide
(Sigma-Aldrich); and apoptosis inducers TRAIL (Biomol, Philadel-
phia) and anti-FAS (Roche). Cells were incubated for up to 4 days
at 371C in 5% CO2. Survival was measured by processing cells
with 20ml of CellTiter 96 AQueous One Solution Cell Proliferation
Assay ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS); Promega, Madison, WI)

for 2 h and measurement of color reaction absorbance at 485 nm
using a TECAN microplate reader, which was expressed as a frac-
tion of untreated cells. Apoptosis was measured using Annexin-V
staining, Sytox-Hoechst stain and caspase-3 activity assay as
previously described (Hentze et al, 2003; Li et al, 2004). For
Annexin-V staining, 5ml of Annexin-V (PE) (Pharmingen) was
incubated with 105 pretreated cells for 1 h and analyzed by flow
cytometry using a Becton Dickinson FACScan machine and using
the CellQuest program.

Measurement of mitochondrial complex I and citrate synthase
activities
The NADH-coenzyme Q1 oxidoreductase activity of complex I was
measured using mitochondria isolated using the Mitochondrial
Isolation Kit (Pierce, Rockland, IL). Assays were performed as
described (Estornell et al, 1993). Mitochondria were freeze-thawed
three times and incubated immediately with 50 mM Tris–HCl, pH
8.0, 50 mM KCl, 1 mM EDTA, 2 mM KCN, 150mM NADH and 100mM
coenzyme Q1. All reagents were obtained from Sigma-Aldrich. A
time course for NADH oxidation was measured at 340 nM using
a TECAN microplate reader at 371C and calculated using an
extinction coefficient of 5.5 mM�1 cm�1. Citrate synthase activity
was measured using the Citrate Synthase Assay Kit (Sigma-Aldrich)
and performed according to the manufacturer’s instructions.
Protein concentration measurements were performed using the
Bio-Rad Protein Assay Solution.

Colony formation in soft agar
Cells were trypsinized and resuspended in McCoy’s 5A medium
supplemented with 10% fetal bovine serum, 100 U/ml penicillin,
100mg/ml streptomycin and 0.3% noble agar (Difco). A total of
103 cells/well were plated in six-well plates containing solidified
medium with 1% noble agar. Plates were incubated at 371C in 5%
CO2 and fed with fresh media every 5 days. After 14 days, cells were
incubated with 1 mg/ml 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide (MTT; Sigma-Aldrich) for 1 h.

Tumorigenesis in athymic mice
Cells (5�106) were subcutaneously injected into the flanks of 4- to
5-week-old athymic nude mice (Animal Resource Centre, Australia)
and incubated for 3 weeks. Tumors were excised, weighed and
dimensions were measured using calipers. Tumor volume (cm3)
was determined using the standard formula a2� b/2, where a is the
width and b is the length of the horizontal tumor perimeter. A total
of 10–15 athymic nude mice were used for each cell line in two
experiments, and the data were represented by the mean values. All
animal experiments were performed strictly in accordance with
Institute of Molecular and Cell Biology and A*Star regulations.

Foci formation
To demonstrate the transforming properties of human AIF, NIH3T3
cells were transfected with cDNA encoding AIF-GFP or various
mutants, and the cells were sorted as described above. Cells were
continuously cultured for 3–6 weeks and monitored for foci
formation. Plates were analyzed after 6 weeks of incubation by
staining with crystal violet (0.3% crystal violet, 30% methanol), and
only dense colonies more than 2 mm in diameter were scored as foci.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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