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Figure 1 Density of global p values for the multiple-comparisons procedure used by Bugawan et al. (2003) under the global null hypothesis
for two independent tests (a) and three independent tests (b). In panel a, , where P1 and P2 are independently uniform on (0,1)P { F (P ,P )0 0 (1) (2)

and F0 is the cumulative distribution function of the order statistics, as discussed in the text. In panel b, , where P1, P2, andP { F (P ,P ,P )0 0 (1) (2) (3)

P3 are independently uniform on (0,1). Densities are estimated from 10,000 Monte Carlo replicates.

Am. J. Hum. Genet. 74:582–584, 2004

Multiple Comparisons in Studies of Gene # Gene
and Gene # Environment Interaction

To the Editor:
(d log h /d log W ) F p 0it it lit

Complex diseases are (by definition) influenced by
multiple genes, environmental factors, and their inter-
actions. There is currently a strong interest in studies
testing for association between combinations of these
factors and disease, in part because genes that affect the
risk of disease only in the presence of another genetic
variant or particular environment may not be detected
in a marginal (gene-by-gene) analysis (Culverhouse et al.
2002). Such studies raise the problem of multiple com-
parisons. Even when a small number of candidate genes
and environmental factors is examined, a large number
of possible interactions may need to be tested, as illus-

trated by a recent article in The American Journal of
Human Genetics (Bugawan et al. 2003).

Bugawan et al. (2003) investigated potential interac-
tion between the IL4R locus and five tightly linked SNPs
in the IL4 and IL13 loci on chromosome 5, through use
of a sample of 90 patients with type I diabetes and 94
population-based controls. They independently tested
each of the chromosome 5 SNPs for interaction with
IL4R, through use of logistic regression (cf. their table
7), and corrected for multiple comparisons through use
of a permutation procedure. They concluded that there
is statistically significant evidence for an epistatic inter-
action between at least one of the chromosome 5 SNPs
and the IL4R locus. However, the authors’ permutation
procedure does not have the desired statistical prop-
erty—that is, it rejects the global null hypothesis of no
interaction too often when none of the estimated inter-
action parameters differ from their null value. In this
letter, I discuss why their procedure fails, present several
alternatives, and compare the performance of these al-
ternatives in a small simulation study.
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Table 1

Observed False-Positive Rates (False-Discovery Rates) for
Procedures with Nominal 5% Rates in the Context of Testing Five
Possible Gene # Gene Interactions, Calculated from 500
Simulated Data Sets

PROCEDUREa

FALSE-POSITIVE RATE UNDER MODEL

Null I Null II

CDF .194 .214
Simes .032 .036
RSimes .048 .058

FALSE-DISCOVERY RATE UNDER MODEL

Null I Null II

BHD .014 .014
DRW .050 .070

NOTE.—Six SNPs were simulated for 100 cases and 100 controls.
The first SNP had mutant-allele frequency of .2; the other five SNPs
were generated independently of the first by sampling five-SNP hap-
lotypes with frequencies similar to those given in table 5 of Bugawan
et al. (2003). Under model Null I, none of the SNPs were associated
with disease. Under Null II, each mutant allele for the first SNP doubles
disease risk, but the remaining five SNPs are not associated with dis-
ease. The multiple-comparisons procedures are applied to the p values
from five Wald tests for interaction based on the logistic model

, analogous to that∗Pr (disease) p a � b SNP � bSNP � b SNP SNP1 1 i int 1 i

of Bugawan et al. (2003).
a “CDF” denotes the cumulative distribution function procedure

used by Bugawan et al. (2003); “Simes” is the standard Simes’s test;
“RSimes” is Simes’s test applied to p values calculated by comparing
the observed p values to the distribution of p values generated by
permuting the outcome variable 200 times; “BHD” is the Benjamini
and Hochberg step-up procedure corrected for general dependency
(Benjamini and Yekutieli 2001) (the usual step-up procedure is iden-
tical to Simes’s test in this case); and “DRW” is the related procedure
proposed by Devlin et al. (2003).

The procedure presented by Bugawan et al. (2003)
amounts to plugging the order statistics for the observed
p values, , into their joint cumulative distri-p , … ,p(1) (5)

bution function under the null: p p F (p , … ,p ) p0 (1) (5)

. (Here, italicized uppercasePr (P � p , … ,P � p )(1) (1) (5) (5)

letters refer to random variables, and lowercase letters
refer to observed values of the corresponding variables.
This differs from the notation in the Bugawan et al.
[2003] article.) The authors estimate F0 by permuting
case-control labels 200 times and calculating the ordered
p values for each permutation.

A simple example shows that this approach is inap-
propriate. Consider the p values from two independent
tests, P1 and P2. If we assume a large enough sample
size, P1 and P2 are independently uniform on (0,1) under
the null, and, hence, the cumulative distribution func-
tion for the associated order statistics, , isF (p ,p )0 (1) (2)

(Bickel and Doksum 1977). The distri-P (2p � p )(1) (2) (1)

bution of under the global null is shownP p F (P ,P )0 (1) (2)

in figure 1a. P does not have a uniform distribution
under the null, as we expect for a p value. In this case,
a test that rejects the global null hypothesis that both
tests are null when would have a type I errorP ! .05
rate between 10% and 15%. As shown in figure 1b, the
magnitude of the type I error rate increases as the num-
ber of independent tests increases.

There are several alternative, theoretically justified
and simple procedures that correct for multiple com-
parisons, besides the notoriously conservative Bonfer-
roni correction. Simes’s test (Simes 1986), for example,
controls the overall significance level (also known as the
“familywise error rate”) when the tests are independent
or exhibit a special type of dependence (Sarkar 1998).
Simes’s test rejects the global null hypothesis that all K
test-specific null hypotheses are true if forp � ak/K(k)

any k in . Simulation results reported in table 11, … ,K
suggest that Simes’s test has the appropriate false-posi-
tive rate, even when the tests are correlated.

Other approaches with particular appeal in the con-
text of multiple-gene and multiple-environmental-factor
studies aim to control the false-discovery rate—that is,
the expected proportion of rejected null hypotheses that
are falsely rejected. This approach is particularly useful
when a portion of the null hypotheses can be assumed
false, as in microarray studies. Devlin et al. (2003) re-
cently proposed a variant of the Benjamini and Hoch-
berg (1995) step-up procedure that controls the false-
discovery rate when testing a large number of possible
gene # gene interactions in multilocus association stud-
ies. The Benjamini and Hochberg procedure is related
to Simes’s test; setting such that∗k p max k p(k) �

, it rejects all null hypotheses corresponding to∗ak/K k
. In fact, the Benjamini and Hochberg pro-p , … ,p ∗(1) (k )

cedure reduces to Simes’s test when all null hypotheses
are true (Benjamini and Yekutieli 2001).

Devlin et al.’s (2003) proof for the validity of their
false-discovery-rate procedure requires that the analyzed
genes be statistically independent. This is not the case
for the IL4 and IL13 SNPs studied by Bugawan et al.
(2003), but the simulation results in table 1 suggest that
Devlin et al.’s (2003) procedure controls the false-dis-
covery rate even when the analyzed genes are correlated.

The p values reported in table 7 of Bugawan et al.
(2003) do not lead to any significant results at the .05
level when any of the alternative procedures discussed
here are used.

Clearly, effective methods are needed for adjusting for
multiple comparisons when testing for association be-
tween multiple factors and complex disease. On the one
hand, blithely reporting any results marginally “sig-
nificant” at the .05 level or relying on outdated and
ill-performing stepwise model-building procedures (see,
e.g., Burnham and Anderson [2002] and Devlin et al.
[2003]) will lead to spurious results, expensive follow-
up studies with little chance of replication, and confu-
sion. On the other hand, overly conservative procedures
will create missed opportunities. Although the proce-



584 Letters to the Editor

dures discussed here are known to control the familywise
error rate or false-discovery rate in particular situations
(e.g., independent covariates), their performance in more
general situations needs further investigation.

PETER KRAFT

Departments of Epidemiology and Biostatistics
Harvard School of Public Health
Boston
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Reply to Kraft

To the Editor:
Our study (Bugawan et al. 2003) reported a negative
association of a specific IL4-524 haplotype with type 1
diabetes (T1D), consistent with a previous report (Mirel
et al. 2002), and presented evidence for a genetic inter-
action between IL4-524 and IL4R SNPs. To test the lat-

ter, we computed relevant P values by permuting mul-
tilocus genotypes separately in case and control groups.

The criticism raised by Kraft (2004 [in this issue]) is
not directed at our implementation of permutation test-
ing, per se, but at permutation testing in general. His
argument is that permutation testing does not properly
account for multiple comparisons, resulting in an in-
crease in false claims of significance, or type I familywise
error (FWE). In the place of permutation testing, Kraft
advocates the use of the Simes method—an elaboration
of the classic Bonferroni procedure. In response, we wish
to show that permutation testing can be used to obtain
a desired false-positive error rate (as, indeed, can be dem-
onstrated using Kraft’s example) and, moreover, that
such an approach has the added advantage of providing
additional protection against false claims of nonsignif-
icance, or type II error.

It should be noted that permutation methods are well
established as a robust approach for obtaining overall
significance levels while minimizing type II error (e.g.,
Good 1994; Doerge and Churchill 1996; Lynch and
Walsh 1998), that such methods are extensible to mul-
tiple-testing scenarios (Westfall and Young 1993), and
that examples of their application to human genetics are
not uncommon (e.g., Lewis et al. 2003). However, as
with any statistical method, the validity is dependent on
correct application. Kraft provides an analysis of the
permutation testing by discussing the distribution of two
P values obtained from hypothetically permuted distri-
butions (i.e., independent and uniformly distributed un-
der the null hypothesis). The joint cumulative distribu-
tion function (CDF) for these two P values is given as

, where P(1) and P(2) are, re-F(P P ) p P (2P � P )(1), (2) (1) (2) (1)

spectively, the first- and second-ordered P values. As
such, Kraft notes that the for this joint dis-Pr (P ! .05)
tribution is ∼0.1, indicating that we would expect to see
the smaller P value, or , about 10% of the time.P ! .05(1)

Kraft’s argument, therefore, is that for independent tests,
use of a critical value of .05 leads to a type I error rate
of 10%.

In fact, the proper approach for permutation testing—
adjusted or unadjusted for multiple comparisons—is to
find the critical value corresponding to the desired type
I error rate. Specifically, if we consider the simulations
presented by Kraft as equivalent to the result of a per-
mutation test, we would seek the value of x in the per-
muted distribution for which is actually �aPr (P ! x)
and would use that value, not the .05 value as Kraft
appears to suggest. For P(1), this critical value would be
.0253, as can be shown either by simulation or by solv-
ing Kraft’s joint CDF for , given (ina p 0.05 P p 1(2)

effect, solving the marginal CDF for P(1)). It is interesting
to note that the first P value that Kraft gives (.10) cor-
responds to the Sidak multiple comparison–adjusted P
value for observed and tests, whereasa p 0.05 k p 2
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the value we give corresponds to the Sidak-adjusted
threshold ( ). As such, this example nicely1/k1 � [1 � a]
illustrates that permutation testing, for two indepen-
dent tests, yields familiar and contextually appropriate
results.

It should also be noted that multiple-testing methods
that rely on raw Bonferroni-type inequalities fail to in-
corporate correlation structures between tests. There-
fore, although such methods (e.g., Simes 1986; Hoch-
berg 1988; Rom 1990) provide control of FWE, they
nevertheless are expected to be less powerful than meth-
ods that account for such dependencies. Indeed, these
methods may be made more precise through resampling-
based approaches (Westfall and Young 1993). In par-
ticular, the data from which the tests in table 7 (Bugawan
et al. 2003) were derived are strongly correlated, and,
therefore, tests that assume independence are not ex-
pected to be the most powerful. Moreover, Kraft fails
to take into account the nonindependence of genotype
distributions between chromosome 5 and chromosome
16 SNPs presented in table 6 (Bugawan et al. 2003).
Applying the Simes correction suggested by the author
for 10 comparisons (two sets: patients and controls, and
five SNPs), the independence between IL4-524 and IL4R
patient genotypes would be rejected with , sup-P ! .01
porting our conclusion of an interaction between chro-
mosome 5 and chromosome 16 in T1D susceptibility.

In conclusion, what is needed, from a methodological
perspective, are statistical procedures that adequately
protect against false claims of significance while simul-
taneously addressing the correlated nature of multiple
testing. The various methods discussed by Kraft address
the former but do not address the latter. Having said
this, whatever the statistical approach, the strongest test
of the significance of any reported genetic interaction
lies neither in initial-discovery P values nor in biologic
plausibility—which we believe is high in this case—but
in the ability to reproduce observations in independent
cohorts.

ANA MARIA VALDES, BRIAN RHEES, AND

HENRY ERLICH

Roche Molecular Systems
Alameda, CA
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Revisiting the Clinical Validity of Multiplex Genetic
Testing in Complex Diseases

To the Editor:
The usefulness of genetic testing to identify high-risk
patients for common multifactorial diseases is subject to
debate. Optimism about the public health opportunities
is counterbalanced with skepticism, since genetic factors
appear to play a role in only a minority of patients with
complex diseases, the number of genes involved is large,
and their penetrance is incomplete (Holtzman and Mar-
teau 2000; Vineis et al. 2001).

In last March’s issue of the Journal, Yang and col-
leagues addressed the question of whether prediction of
disease is improved by multiplex genetic testing (Yang
et al. 2003). At first sight, their results seem promising.
In a simulation study, they considered five genetic tests
(g1–g5), which each could have a positive ( ) org p 1i

negative result ( ). Yang et al. used the likelihoodg p 0i

ratio to indicate the magnitude of change in disease
probability before and after genetic testing. Positive test
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Figure 1 Probability of disease before and after testing for multiple genes and environmental exposure. The two-gene test has 4 (22)
possible test results, the three-gene test has 8 (23) results, and so on. The posterior probability of disease for each combination of test results
is obtained from the regression equations in table 1 of Yang et al. (2003).The prevalence of each combination is calculated by multiplying the
probabilities of positive (p) and negative ( ) test results of each single test. For example, for the two-gene test we calculate that 60%1 � p
([1�0.25] # [1�0.20] # 100) of the individuals will have negative results on both tests and 15% ([1�0.25] # 0.20 # 100) will have a
negative result on test 1 and a positive result on test 2. To facilitate presentation of all results, a cumulative prevalence (X-axis) was calculated,
which was obtained by summing the prevalences after ranking the outcomes on their posterior probability.

results have a likelihood ratio 11, which means that the
posterior disease probability is higher than the prior
probability. Negative test results have a likelihood ratio
!1. The combined likelihood ratio of several indepen-
dent test results can be obtained by multiplying their
individual likelihood ratios. Using these principles, Yang
et al. showed that combining information on five genetic
factors and one environmental exposure in one multi-
plex test may increase a 5% baseline risk to 88.9%,
which was considerably higher than the posterior prob-
abilities obtained by testing for the single genes (7.8%–
16.4%). In addition, they demonstrated using empirical
data from a study on deep venous thrombosis that the
posterior probability of venous thrombosis was sub-
stantially higher when three genes, factor V Leiden,
G20210A prothrombine, and protein C deficiency, were
considered simultaneously (61.6%), rather than each
gene alone (1.2%–3.1%). These estimates are correct,
but they do not demonstrate the clinical validity of mul-
tiplex genetic testing, as the authors concluded. There
are four reasons for this.

First, Yang et al. based their conclusion on only one
outcome of the composite test—that is, the combination
of positive results on all individual tests. Although Yang
et al. acknowledged in their discussion that this concerns
only a small proportion of the population, they did not
quantify the size of the proportion. From multiplication

of the prevalences of the test results, we calculate that
the 18-fold increase in probability of disease in the sim-
ulated data was found in 0.0006% (6 per million) of all
subjects and the 100-fold increase in the risk of venous
thrombosis in only 0.0004% (4 per million). This low
prevalence of high-risk combinations of genes may limit
the clinical usefulness of genetic testing.

The second point is related to this issue. Yang et al.
presented disease probabilities for subjects who had pos-
itive results on all single tests, but they did not report
the probabilities for subjects who had combinations of
both positive and negative results. The posterior prob-
abilities and prevalences of all test result combinations
are presented in figure 1. This figure demonstrates that
the probabilities that Yang et al. had reported are the
highest points in each of the graphs. Although these
probabilities increase when genes are added, the prob-
abilities of all other test result combinations do not rise
accordingly. This is explained by the fact that positive
results on each single test increase the combined likeli-
hood ratio. This implies that the posterior probabilities
reported by Yang et al. increase by definition when tests
are added. In all other combinations with one or more
negative test results, the likelihood ratios of negative
results on the single tests will decrease the overall like-
lihood ratio. For the majority of subjects, the benefits
of multiplex genetic testing in terms of the difference
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Figure 2 ROC curves for the multiplex genetic tests of Yang et
al. (2003).

between the prior and posterior probability are less
profound.

A third point is that each genetic test that was added
by Yang et al. was a stronger predictor of disease than
those already considered in the multiplex test. The rel-
ative risks of the positive test results increased from 1.5
to 3.5, with likelihood ratios ranging from 1.6 to 3.7.
This implies that the increase in the likelihood ratio of
the composite test results may not only be due to the
addition of tests but probably also to their higher pre-
dictive values. If the likelihood ratio of each single test
had been 1.7, similar to the first test, then the combined
likelihood ratio for subjects who had positive results on
all five tests would have been 14.2, much lower than
the 77.6 reported by Yang et al. This demonstrates that
the substantial increase in the likelihood ratio was
largely explained by the increasing predictive value of
the single genes. In general, the added value of expanding
a multiplex test will depend on the predictive value of
each individual genetic test.

The fourth point concerns the most important con-
clusion of the authors that multiplex genetic testing has
the potential to improve the clinical validity of predictive
testing for common multifactorial diseases. This conclu-
sion was based on the substantial increase in the prob-
ability of disease of individuals who had positive results
on all single tests. However, the clinical validity of a test
does not depend on the posterior probability for a few
subjects, but on its ability to discriminate between the
probability of disease in subjects who will develop the
disease and those who will not. The discriminative abil-
ity of a test is commonly evaluated by its sensitivity and
specificity. The sensitivity of a test is the percentage of
positive test results among subjects who will develop the
disease, and the specificity is the percentage of negative
test results among subjects who will not develop the
disease. On a perfect, or “gold-standard,” test, all sub-
jects who will develop the disease have a positive test
result (sensitivity p 1), and all subjects who will not
develop the disease have a negative result (specificity p
1). For composite tests, positive and negative results are
defined by a cutoff value of the disease probability. The
sensitivity and specificity of a composite test may differ,
depending on the cutoff probability that is chosen.
Therefore, the sensitivity and specificity are calculated
for each possible cutoff value of the probability and
plotted in a so-called receiver-operating–characteristic
(ROC) curve (Hanley and McNeil 1982). The area under
the ROC curve (AUC) indicates the discriminative ability
of a composite test. The discriminative ability is perfect
if the AUC is 1, whereas an AUC of 0.50 indicates a
total lack of discrimination (Hanley and McNeil 1982).
If one is interested in whether genetic tests can improve
the accuracy of prediction above and beyond certain
minimum levels of sensitivity or specificity, one may also

consider analyses of a partial AUC (e.g., Thompson and
Zucchini 1989). The ROC curves for the composite tests
considered by Yang et al. are presented in figure 2. The
total AUC increases from 0.59 for the two-gene test to
0.70 for the five-gene test, which means that adding
genes improves the discriminative ability of the multiplex
genetic test. Also here, one may question whether this
increase was due to the addition of genes or to their
increasing predictive values. To examine this, we con-
sidered the relative risks in equal steps from 1.5 to 1.7,
rather than from 1.5 to 3.5, which is more realistic for
genetic factors in common diseases. With these lower
relative risks, the AUC of the two-gene test was 0.57
and that of the five-gene test was 0.61. This difference
between the AUCs was smaller than that obtained from
the data from Yang et al., which implies that also the
increase in the discriminative ability of their multiplex
tests is largely explained by the increasing predictive
value of the added tests.

What can we learn from the ROC curve about the
clinical validity of genetic testing? The aim of genetic
screening is often to select high-risk subjects for preven-
tive treatment or intensified surveillance programs. For
this purpose, the sensitivity of the test should be high
so that most (future) patients are identified by a positive
test result. A high specificity of the test is desired to
increase the efficiency of screening, because then the
number of subjects who are unnecessarily selected for
preventive interventions is minimized. From figure 2 it
follows that a sensitivity of 0.80, which means that still
20% of the patients are missed by the screening pro-
gram, is accompanied by a specificity of 0.45. The latter
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means that 55% of all subjects who will not develop
the disease will be classified falsely. In a population in
which 95% of the individuals will not develop the dis-
ease, as in the study of Yang et al., this means that 52%
will undergo unnecessary preventive treatment. When a
sensitivity of 0.90 is chosen, the percentage of all subjects
who are unnecessarily selected is 73%. In comparison,
the sensitivity and specificity of mammography in a large
population–based breast cancer screening program were
0.75 and 0.92, respectively (Carney et al. 2003). Thus,
the multiplex genetic tests of Yang et al. are by no means
efficient screening strategies.

In conclusion, the clinical usefulness of genetic testing
should be evaluated by ROC analysis. Using this ap-
proach for the data of Yang et al., we found that the
discriminative ability of the multiplex genetic test in-
creased by the addition of more genes but that its per-
formance for use as a screening instrument was rather
inefficient. It remains to be investigated whether these
results are representative of the prediction of common
disease by multiplex genetic tests that include genetic
factors with low mutation prevalence and low relative
risks. In that case, alternative statistical strategies are
needed to increase the potential clinical application of
selective genetic testing.
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Revisiting the Clinical Validity of Multiplex Genetic
Testing in Complex Diseases: Reply to Janssens et al.

To the Editor:
We appreciate the comments by Janssens and her as-
sociates (2004 [in this issue]) regarding our study on the
use of likelihood ratios to improve the prediction of
complex diseases by testing for multiple-susceptibility
genes (Yang et al. 2003). As Janssens et al. correctly
point out, our study considers only the predicted prob-
ability of disease for subjects who have all positive test-
ing results, and this is likely to be an infrequent occur-
rence. We think that the suggestion made by Janssens et
al. to use receiver-operating–characteristic (ROC) curves
to assess multiple genetic testing is very useful. The ROC
curves provide a valuable way of evaluating the accuracy
and discriminatory ability of diagnostic tests (Hanley
1989). Janssens et al. use the ROC curves to assess the
classification of patients into a disease group, but mul-
tiplex genetic testing is likely also to be of value in iden-
tifying people who are at lower-than-average risk for
developing a particular disease. This might allow them
to put off receiving a more expensive intervention for
some time—for example, to defer mammography for
breast cancer detection for 10 years (Fletcher 1997) or
to avoid screening for prostate cancer until �60 years
of age (Harris and Lohr 2002).

The predictive value of combining tests obviously does
depend on the relative risk associated with each com-
ponent test, with a bigger effect resulting from tests that
make larger independent contributions. Janssens et al.
suggest that an odds ratio of 1.5–1.7 for each test is
more likely than an odds ratio of 3.5. This might be
true, but we do not yet know what the relative frequency
of genes of larger or smaller effect will turn out to be
for any common multifactorial disease. We used five ge-
netic tests and an environmental factor as a simplified
illustration in our analysis, but, in the near future, 50
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or 100 genetic tests might be available for many common
diseases. If there are numerous predisposing alleles and
each has an independent odds ratio of only 1.5–1.7, the
overall effect would still be substantial. We simulated
models of 10, 15, and 20 genes with a risk of 1.5–1.7
each and found the areas under the ROC curves (AUCs)
to be 0.70, 0.74, and 0.77, respectively. The discrimi-
natory ability of 20 gene tests, each with an odds ratio
of 1.5–1.7, is comparable with the test of total choles-
terol level for prediction of coronary heart disease (Wil-
son et al. 1998). The effect would be even greater if only
5% or 10% of all alleles tested had odds ratios in the
range of 2.5–3.5 or if we could identify combinations
of a few genes and/or gene-environment interactions that
are strong predictors of the disease.

The comments of Janssens et al. also raise several in-
teresting points regarding different perspectives on mul-
tiple genetic testing. Epidemiologic studies, including
those on the utility of ROC curves for screening, provide
a useful population perspective. In contrast, clinicians
usually focus on individual patients rather than on the
population as a whole, and this focus will be enhanced
by the development of personalized genomic medicine
(Roses 2000; Jain 2002). It is true that no more than a
few people per million might turn out to have a very
high risk defined by positive results for multiple genetic
tests for a particular disease. However, it might be very
important to these few people to know that they are at
high risk if an intervention is available to prevent the
disease. Our likelihood-ratio–based method provides an
approach that is useful for individual patients and their
physicians in predicting the probability of developing
disease.
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Impact of Genotyping Errors on Type I Error Rate of
the Haplotype-Sharing Transmission/Disequilibrium
Test (HS-TDT)

To the Editor:
In a recent issue of the Journal, Zhang et al. (2003)
proposed a haplotype-sharing transmission/disequilib-
rium test (HS-TDT) for the null hypothesis of no linkage
or no association between a disease and a chromosomal
region in which several tightly linked markers have been
typed. Their method is applicable to data of nuclear
families without phase information. The general idea of
their approach is to compare the similarity of the trans-
mitted haplotypes with the similarity of the nontrans-
mitted haplotypes. If the chromosomal region contains
a susceptibility locus, it is expected that the haplotypes
being transmitted to affected children are more similar
than parental haplotypes that have not been transmitted.
This reasoning seems intuitively appealing. However, it
may be supposed that a larger observed similarity for
transmitted than for nontransmitted haplotypes is not
necessarily due to the presence of a disease-susceptibility
locus but can be a consequence of undetected genotyping
errors. The proportion of genotyping errors that result
in a Mendelian inconsistency (MI) is relatively small for
family trios (Gordon et al. 1999). More important, in
the context of HS-TDT, is the fact that the chance to
detect a genotyping error differs for transmitted and
nontransmitted haplotypes. Obviously, mistyping of an
allele on a nontransmitted parental haplotype can never
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Table 1

Estimates (Based on 1,000 Replicated Samples) of
the True Type I Error Rate of HS-TDT in the
Absence of Genotyping Errors for Nominal Type I
Error a and for Two Different AOs to Handle
Ambiguous Families

N

ESTIMATED TRUE TYPE I ERROR RATE

AO1 AO2

a p .05 a p .01 a p .05 a p .01

100 .049 .009 .045 .006
200 .061 .009 .061 .009
1,000 .045 .010 .045 .010

Table 2

Estimates (Based on 1,000 Replicated Samples) of the True Type I Error Rate of
HS-TDT (AO1) in the Presence of Genotyping Errors for Nominal Type I Error a

and for Three Different Options to Handle MIs

N �

ESTIMATED TRUE TYPE I ERROR RATE

EO1 EO2 EO3

a p .05 a p .01 a p .05 a p .01 a p .05 a p .01

100 .01 .576 .297 .471 .228 .540 .264
100 .005 .215 .079 .219 .075 .208 .075
200 .005 .389 .164 .393 .146 .383 .164
1,000 .001 .146 .039 .167 .045 .147 .039

result in a MI and, therefore, cannot become prominent.
Another way to understand this problem is to imagine
that transmitted haplotypes are partially checked for
their integrity, whereas there is no such checking at all
for the nontransmitted haplotypes. A single error oc-
curring at one locus of a haplotype, however, can have
a tremendous effect on the measure of similarity of this
haplotype with all other haplotypes. Thus, nontrans-
mitted haplotypes can appear less similar than trans-
mitted haplotypes as a result of undetected genotyping
errors. In statistical terms, genotyping errors may lead
to an inflated type I error rate for the HS-TDT.

To quantify the magnitude of this inflation, we per-
formed a simulation study. Our simulation study as-
sumes that, for 19 tightly linked and equidistant diallelic
marker loci, only 29 different haplotypes occur in the
population. This set of haplotypes and the correspond-
ing frequencies are shown in table A of the online-only
supplemental material. For all family trios, we generate
the parents’ genotypes according to this haplotype dis-
tribution. The haplotype pair in the child is obtained by
randomly selecting one of the two haplotypes in each
parent. Next, genotyping errors are introduced indepen-
dently into the alleles according to the stochastic error
model, for which � denotes the probability that, at each
marker locus, the allele is changed. We consider the cases
for (no genotyping errors), ,� p 0 � p 0.001 � p

, and . Sometimes, a genotyping error be-0.005 � p 0.01
comes visible by leading to MI. We consider three dif-

ferent error options (EOs) as strategies for responding
to such an inconsistency: (EO1) genotypes of a marker
locus with MI are considered to be unknown in all in-
dividuals of the family; (EO2) in the presence of MI for
at least one marker locus, the whole family is discarded
from the analysis; and (EO3) a marker locus showing
MI is typed again, and it is assumed that the retyping
results in error-free genotypes for this marker locus. The
number of family trios in a sample is denoted by N, and
we let , 200, or 1,000. Note that for EO2, theN p 100
number of families used for statistical analysis is gen-
erally smaller than N. For each combination of �, EO,
and N, 1,000 samples are generated.

To analyze a simulated sample by the HS-TDT pro-
posed by Zhang et al. (2003), we discard the phase in-
formation. The first step for statistical analysis is to
obtain haplotype estimates. This is achieved by the pro-
gram FAMHAP (Becker and Knapp, in press), which
applies a locus-iterative mode of the expectation-maxi-
mization (EM) algorithm (Dempster et al. 1977) to ob-
tain maximum-likelihood estimates of haplotype fre-
quencies in general nuclear families. Zhang et al. (2003)
discussed two different analysis options (AOs) to make
use of estimated haplotype frequencies in case of am-
biguous phase information in the families of the sample:
(AO1) each possible haplotype explanation of an am-
biguous family is weighted by its relative likelihood and
(AO2) each ambiguous family is assigned its most likely
haplotype explanation. Our simulated samples are an-
alyzed by both of these AOs. The HS-TDT requires a
permutation procedure to obtain the P value of the test.
For each sample, we estimate the P value by 10,000
permutations. The true type I error rate at nominal error
rate a is estimated by the fraction of the 1,000 replicated
samples resulting in a P value �a.

The results are shown in tables 1 and 2. If there are
no genotyping errors (i.e., ), table 1 reveals a good� p 0
agreement between nominal and true type I error rate,
irrespective of the AO used to handle ambiguous fam-
ilies. (Note that if there are no genotyping errors, no
MIs can occur, and, therefore, the EO is irrelevant.) Ta-
ble 2 gives estimated type I error rates for the three EOs
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and AO1. Results are virtually identical when the most
likely haplotype explanation is assigned to ambiguous
families (see table B in the online-only supplemental ma-
terial). As is obvious from table 2, the agreement be-
tween nominal and true type I error rate is disastrous
in the presence of genotyping errors. Even quite small
probabilities of genotyping errors lead to a dramatic
inflation of the type I error. For fixed values of �, the
extent of this inflation increases with increasing sample
size (N), as can be seen by comparing the second and
third row in table 2. For a large sample size of N p

family trios, an error probability of is1,000 � p 0.1%
sufficient to falsely reject the null hypothesis at a p

in almost every sixth study. For small values of N0.05
and large values of �, the inflation of type I error is
slightly less pronounced for EO2 than for EO1, which
is explained by noting that EO2 leads to a decrease of
the sample size used for the analysis. At first sight, it
may be surprising that no essential decrease of the in-
flation of type I error is obtained by employing EO3.
However, correcting genotypes leading to MIs does not
affect errors in the nontransmitted haplotypes.

What are possible limitations of our simulation study?
We assume a specific haplotype structure in the popu-
lation, such that only 29 different haplotypes are present.
Indeed, we conjecture that with larger haplotype diver-
sity, the effect of genotyping errors on the type I error
rate of the HS-TDT will be less pronounced than in the
example considered here. On the other hand, however,
it does not seem very realistic to expect that the HS-
TDT will have substantial power to detect a disease locus
in a region in which the markers are in complete or
nearly complete linkage equilibrium in the population.
Thus, although our example describes a specific situa-
tion, it does not seem to be unrealistic for the genetic
structure of a region for which the HS-TDT may have
a good chance of detecting a disease locus. A second
possible limitation is that we employed a quite simple
error model that assumes the independence of genotyp-
ing errors from factors such as marker locus, true allele,
etc. However, we see no reason why the behavior of the
type I error rate of the HS-TDT should be qualitatively
different for more complex models of genotyping errors.
Additionally, we are convinced that the range 0.1%–1%
for the probability (�) of a genotyping error considered
here is not too pessimistic for currently available meth-
ods of high-throughput genotyping.

In summary, we have shown that the correctness of
genotypes is crucial for obtaining meaningful results by
the HS-TDT. We have also demonstrated that the re-
typing of only those marker loci that show MIs within
a family is useless. A more extreme approach is to ge-
notype all marker loci in all families in duplicate, which
is very expensive and certainly not very popular with
geneticists responsible for generating genotypes. How-

ever, unless extreme care is taken to guarantee the in-
tegrity of the data analyzed by the HS-TDT, this inter-
esting and appealing method has the potential of
becoming a mighty tool for the enlargement of the heap
of false-positive association results in human genetics.
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Reply to Knapp and Becker

To the Editor:
Knapp and Becker (2004 [in this issue]) have argued
that genotyping errors may lead to an inflated type I



592 Letters to the Editor

Table 1

Parameters and Results of Simulation Study of Type I Error Rate of HS-TDT in the Presence of
Genotyping Error

SIMILARITY

MEASURE

TYPE I ERROR RATE FOR

PARAMETERS EO2 EO3

No. of
Children/
Family

No. of
Nuclear Families/

Sample

Typing
Error Rate

(e) aa p .05 aa p .01 aa p .05 aa p .01

Original: 1 100 .01 .457 .227 .364 .147
1 100 .005 .228 .08 .193 .075
1 200 .005 .364 .147 .315 .120
3 100 .01 .053 .012 .06 .016
3 100 .005 .056 .013 .046 .011
3 200 .005 .044 .008 .053 .006

New: 1 100 .01 .117 .037 .092 .019
1 100 .005 .079 .016 .073 .014
1 200 .005 .081 .016 .101 .029
3 100 .01 .059 .016 .042 .006
3 100 .005 .059 .015 .043 .009
3 200 .005 .047 .010 .045 .003

NOTE.—The “original similarity measure” refers to the one used by Zhang et al. (2003). Simulation studies
were based on 1,000 replicated samples.

a a p nominal type I error rate.

error rate for the haplotype-sharing transmission/dis-
equilibrium test (HS-TDT) that we proposed (Zhang et
al. 2003). The reason is that transmitted haplotypes are
partially checked for genotyping errors by Mendelian
inconsistency (MI), whereas there is no such checking
at all for nontransmitted haplotypes. As a result of the
unbalanced checking for genotyping errors, nontrans-
mitted haplotypes appear less similar than transmitted
haplotypes, which may lead to an inflated type I error
rate for the HS-TDT. This is especially true for cases in
which there is only one child per nuclear family. As noted
by Gordon et al. (2001), the original TDT also has this
problem. The HS-TDT that we proposed is applicable
to any size of nuclear family and to different traits. To
quantify the magnitude of type I error inflation of HS-
TDT, Knapp and Becker (2004) performed a simulation
study of nuclear families with one child. In fact, the
magnitude of the type I error inflation caused by the
unbalanced checking of the genotyping errors depends
on the genotyping error rate as well as the following
factors:

1. The number of children. If there is more than one
child in the nuclear family, the genotyping errors
in the haplotypes that do not transmit to the first
child may be still detectable because these haplo-
types may transmit to the other children. So, the
inclusion of families with more than one child can
reduce the type I error inflation.

2. The allele frequencies. A smaller minor allele fre-
quency will lead to a larger probability of homo-

zygous genotypes and, therefore, a larger proba-
bility of detectable genotyping errors (MI). Con-
sequently, it will lead to larger type I error inflation
(see table 3 of Gordon et al. 2001). For HS-TDT,
a marker with a small minor allele frequency in the
middle part of the haplotype has a bigger effect
than a marker with a small minor allele frequency
in the edge part of the haplotype.

3. The haplotype similarity measure.

We believe that the reasons for the high type I error
rate of HS-TDT in Knapp and Becker’s simulation stud-
ies are the following: (1) only families with one child
were used; (2) the minor allele frequencies are small for
the markers in the middle part of the haplotypes (for
the total 19 markers, the minor allele frequencies from
marker 7 to marker 16 are 0.16, 0.125, 0.143, 0.143,
0.11, 0.268, 0.089, 0.143, 0.143, and 0.036, respec-
tively); and (3) the haplotype similarity measure that we
proposed in Zhang et al. 2003 is not robust to geno-
typing errors. To compare the different haplotype sim-
ilarity measures, we propose another measure (called
“new similarity measure”) as follows. For two haplo-
types, H and h, let ( ) denote the allele of the hap-H hi i

lotype H (h) at marker i. To find the similarity measure
of the two haplotypes around marker i, we compare
alleles of the two haplotypes in the right-hand markers,
beginning with marker , until marker satisfiesi � 1 i � r

and either orH ( h H ( h H (i�r i�r i�r�1 i�r�1 i�r�2

. Then, similarly, we compare alleles of the twohi�r�2

haplotypes in the left-hand markers, beginning with
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marker , until marker satisfies andi � 1 i � l H ( hi�l i�l

either or . The new simi-H ( h H ( hi�l�1 i�l�1 i�l�2 i�l�2

larity measure is defined as the distance between marker
and marker . Note that a genotyping error thati � l i � r

occurs at one marker but does not occur at the nearby
markers will not affect the new similarity measure. The
probability that genotyping errors will occur in several
consecutive markers is very small. To compare the effect
of the number of children and different haplotype sim-
ilarity measures, we performed simulation studies in
which we used the data and the error options EO2 and
EO3 given by Knapp and Becker (2003). We did not use
EO1 because our program automatically deletes the fam-
ilies with MI genotyping errors. The simulation results
are summarized in table 1. This table reveals that, if
there are three children in each of the nuclear families,
a good agreement between the nominal and estimated
type I error rate is evident for all the simulated samples.
In the case of one child per family, the inflation of the
type I error rate is greatly reduced by using the new
similarity measure. We currently are investigating meth-
ods that are more robust to genotyping errors.
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