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Dryland plant ecosystems tend to exhibit bistable dynamics with
two preferential configurations of bare and vegetated soils. Cli-
mate fluctuations are usually believed to act as a source of
disturbance on these ecosystems and to reduce their stability and
resilience. In contrast, this work shows that random interannual
fluctuations of precipitation may lead to the emergence of an
intermediate statistically stable condition between the two stable
states of the deterministic dynamics of vegetation. As a result,
there is an enhancement of ecosystem resilience and a decrease in
the likelihood of catastrophic shifts to the desert state.

climate fluctuations � ecosystem stability � vegetation dynamics

I t is commonly accepted that dryland ecosystems tend to exhibit
two preferential states, corresponding to desert and vegetated

land (1, 2). The existence of these two stable states usually is
associated with positive feedbacks between vegetation and its
most limiting resource, water (e.g., ref. 1). Natural and anthro-
pogenic disturbances act on these bistable ecosystems, inducing
catastrophic shifts to the stable state of homogeneous, unveg-
etated land (2–4). The strength of disturbances able to induce
phase transitions to a different stable state is known as ecosystem
resilience (3, 5). After the transition to the desert state has taken
place, only a significant increase in resource availability (i.e.,
rainfall) can destabilize the desert state and reestablish a vege-
tation cover. This view of drylands as bistable ecosystems
apparently contrasts with the existence of a middle ground
between desert and completely vegetated landscapes. Recent
studies (6, 7) have shown that spatial heterogeneities and lateral
redistribution of resources can explain the emergence of local-
scale vegetation patterns and the consequent existence of an
intermediate stable condition of vegetation between the two
stable states of the system (3). In this work, we demonstrate that
a similar result can be obtained without invoking the effect of
spatial heterogeneities: we start from a minimalist model of the
bistable vegetation dynamics and show how random interannual
f luctuations of precipitation typical of arid climates (8–11) lead
to the emergence of an intermediate statistically stable config-
uration between the two preferential states of the bistable
deterministic dynamics. This phenomenon of noise-induced
stability has remarkable ecohydrological significance. In fact, it
implies that, instead of acting as a source of disturbance,
interannual rainfall f luctuations are able to induce stability and
enhance the resilience of water-limited ecosystems.

Soil moisture is the key variable explaining the effect of
climate fluctuations on vegetation. Positive feedbacks often exist
between vegetation and soil moisture. Two different mecha-
nisms are often invoked to explain these feedbacks at different
scales. At the regional or subcontinental scales vegetation may
affect the rainfall regime (12) as suggested by simulations with
global and regional circulation models (13, 14). At smaller
(plot-to-landscape) scales a positive feedback explains the exis-
tence of moister soils beneath vegetation canopies with respect
to adjacent bare-soil plots. This feedback has often been attrib-
uted to the larger infiltration capacity of vegetated soils (1), due
to their lower exposure to rain-splash compaction and the higher
hydraulic conductivity resulting from root action. This mecha-
nism is invoked by a number of competition-facilitation models
of pattern formation (3, 6, 7, 15). Others (16–18) argue that soil

moisture–vegetation feedbacks could be associated with the
lower evapotranspirational losses from subcanopy soils, com-
pared with evaporation from bare-soil plots. The ecological
significance of this feedback is that in some regions the estab-
lishment of new seedlings can occur only in vegetated soil plots.

Methods
To investigate the effect of the feedback between soil moisture
and vegetation dynamics, we model the soil water balance for a
shallow soil layer of thickness, Z, as (19)

ds
dt

�
1

nZ
�P�t� � E�s� � D�s��, [1]

where s is the relative soil moisture (0 � s �1), n is the soil
porosity, and P(t) is the infiltrating precipitation, while E(s) and
D(s) are soil moisture losses associated with evapotranspiration
(evaporation only, for bare soils) and drainage (20, 21), respec-
tively. Because of the pulsing character and the rapid variability
of soil moisture typical of arid environments (8), we interpret Eq.
1 at the daily time scale and model precipitation as a sequence
of rainy days using a marked Poisson process of storm occurrence
at rate �, with each storm having random depth exponentially
distributed with mean �. Rainfall infiltration, R(t), is equal to the
whole storm depth or to the soil storage capacity, (1 � s)nZ,
whichever is less, whereas rainfall excess is assumed to be lost
from the system as surface runoff. D(s) is modeled as a function
of soil moisture, D(s) � Ks[e�(s�sfc) � 1]�[e�(1�sfc) �1 ] when s is
greater than field capacity, sfc, while D(s) is zero for s � sfc. Ks
is the saturated hydraulic conductivity, and � is a parameter of
the moisture retention curves (20).

To account for the vegetation–soil moisture feedback, we
reduce soil moisture losses from (shallow) vegetated soils (Fig.
1A) by taking the maximum rate of evapotranspiration as a
fraction, �, of the potential evaporation, PE, from bare soil. The
lower evapotranpirational losses from the top soil beneath
vegetation canopies is because vegetation takes up water from a
deeper soil column than the shallow layer affected by bare-soil
evaporation (22, 23), whereas the atmospheric evaporative de-
mand on bare and vegetated soil is about the same. Thus, E(s)
is expressed as a function of soil moisture (24, 25) and vegetation
biomass, V, as shown in Fig. 1 A for the cases of bare (i.e., V �
0) and completely vegetated (i.e., V � Vmax) soil plots. We denote
Vmax the maximum vegetation biomass (26) sustainable with the
available resources (e.g., nutrients, light, and space) and the
existing disturbance regime (e.g., herbivores and fires). We
characterize the growing-season soil moisture through its aver-
age value, �s�, using existing analytical solutions (20) of Eq. 1.
Fig. 1B shows an example of the dependence of �s� on the
normalized vegetation biomass, v � V�Vmax, and precipitation,
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R, in the growing season. Three different regimes can be defined,
depending on the possible fitness of vegetation to soil moisture
conditions: for small values of R (e.g., R less than a threshold
value, R1) the soil water content is too low for the establishment
of vegetation and only the bare-soil state (i.e., v � 0) is stable;
for large values of R (e.g., R greater than another threshold value,
R2) water stress does not occur, regardless of the amount of
existing biomass, suggesting that the state v � 0 is unstable,
whereas v � 1 is stable. In intermediate conditions (i.e., R1 � R �
R2) average soil moisture is too low for the establishment of
vegetation in bare soil, whereas in completely vegetated plots
(v � 1) the soil available water is sufficient for the existing
vegetation. This finding suggests that in this interval, the system
is bistable, i.e., both bare and completely vegetated soils are
stable configurations. The same dynamical behavior would
emerge regardless of the specific mechanisms [e.g., evaporative
losses (17, 18) or infiltration (1)] responsible for the dependence
of �s� on v shown in Fig. 1B.

We study the year-to-year variability of vegetation through a
minimalist model that captures the main features of vegetation
dynamics, including the soil moisture–vegetation feedbacks
shown in Fig. 1B

dv
d�

� �
dU
dv

� � � v3 � if R 	 R1�

v�1 � v��v � c� � if R 
 R1� ,

[2a]

[2b]

with U being the potential function (Fig. 2A) and � � at the
dimensionless representation of time, t, with respect to the
‘‘inertia,’’ a, of vegetation. c is an unstable state, which depends
on R, as c � (R2 � R)�(R2 � R1) for R 	 R1 (Fig. 2). The cubic
polynomial on the right-hand side of Eq. 2 induces the three
regimes described in ref. 27. In fact, a sign analysis of Eq. 2

Fig. 1. Effect of vegetation on the soil water balance. (A) Dependence of
evapotranspiration on (shallow) soil moisture. Bare-soil (i.e., V � 0) evapora-
tion linearly increases from zero at the hygroscopic point, sh, to potential
evaporation, PE, at field capacity, sfc (24), and remains constant for s 
 sfc. In
completely vegetated plots (i.e., V � Vmax), unstressed evapotranspiration
occurs for s greater than a critical value s*. For s 
 s*, evapotranspiration
linearly decreases, due to stomata regulation (19, 20, 25). E � 0 when s is less
than the permanent wilting point, sw. Soil parameters are for sandy soils (sh �
sw � 0.13; s* � 0.33; sfc � 0.42). PE is 4 mm�d, and the maximum rate of
evapotranspiration from the top 10 cm of soil (Z � 10 cm) is ��PE with � � 0.3.
The use of different values of � does not alter the general results of this study.
(B) Average seasonal soil moisture calculated with Eq. 1 as a function of R for
bare (�s�v�0) and completely vegetated (�s�v�1) soils. The other parameters (n �
0.38; Ks � 2,000 cm�d�1; � � 12.5, � � 10 mm�d�1; � � 0.3, growing season
length of 180 d) are typical of sandy soils and arid climates (e.g., ref. 20).

Fig. 2. Stable and unstable states of the system. (A) Deterministic stable
(solid thick lines) and unstable (dashed thick lines) states of Eq. 2 with R1 � 260
mm and R2 � 360 mm. The plots on the top represent the shapes of the
deterministic potentials, U(v), associated with the different regimes of the
dynamics. The arrows indicate the convergence toward a stable state. The
thin, curved line represents stable (solid) and unstable (dashed) states of the
growth–death model with k � 2 and B � 20 (�s�v�0 and �s�v�1 depend on R as
in Fig. 1B). (B) Noise-induced statistically stable states of the stochastic dy-
namics. Numerically calculated values of the modes of v (from Eq. 2) are shown
with crosses (�R � 0.4�R�) and squares (�R � 0.6�R�). The thin dotted lines show
the modes of v analytically calculated from Eq. 4 by using equation 25 in ref.
28. The agreement between numerical and analytical solutions suggests that
c � c� is a suitable mathematical approximation for the calculation of the
modes of v. The stochastic potential functions associated with Eq. 4 are shown
(dotted lines) in the plots on the top for the cases of �R� � 150, 310, and 410
mm, with �R � 0.6�R�. The shapes of deterministic and stochastic potentials
indicate the emergence of noise-induced stability.
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suggests that bare soil (v � 0) is a stable state only for R 
 R2,
whereas for larger values of R it becomes unstable. v � 1 exists
as a stable state only for R 	 R1 (Fig. 2 A, thick lines). For R1 

R 
 R2, Eq. 2 has two stable configurations (v � 0, 1) separated
by an unstable state (v � c). For R 
 R1, c � 0 and there is no
stable state at v � 1; thus, Eq. 2b degenerates into Eq. 2a. For
R 	 R2, the system has both a stable (v � 1) and an unstable (v �
0) state, whereas the stable state at v � c 
 0 has no physical
meaning.

This mathematical representation of vegetation dynamics, Eq.
2, can be obtained from a simple growth–death model of dryland
vegetation. For example, the net growth rate can be modeled as
proportional to existing vegetation biomass, v, available re-
sources, 1 � v, and photosynthetic rate, which, in turn, (linearly)
depends on �s�. Drought-induced death rates can be expressed as
proportional to the existing biomass and to the water stress, (s*
� �s�)k, with s* being the point of incipient water stress (Fig. 1 A).
Thus, vegetation dynamics can be expressed as

dv
d�

� v�1 � v��s� � Bv�s* � �s��k, [3]

with B and k accounting for the relative importance of growth
and death processes. It is assumed that no drought-induced death
occurs in the absence of water stress (i.e., B � 0 for �s� 
 s*),
whereas the dependence of �s� on v is expressed as �s� � (1 �
v)�s�v�0 � v�s�v�1, with �s�v�0 and �s�v�1 depending on R (Fig. 1B).
This expression in the growth–death model gives a cubic poly-
nomial with coefficients depending on R. The roots of this
polynomial (Fig. 2 A, thin line) are equilibrium states of the
dynamics and have similar properties to those of Eq. 2.

Results
To investigate the effect of interannual rainfall f luctuations on
vegetation dynamics we treat R as an uncorrelated random
variable, with mean �R�, standard deviation �R, and gamma
distribution p(R). The use of other distributions would not alter
the dynamical behavior of the system. The effect of noise is to
switch the dynamics between two different regimes: with prob-
ability P1 � �0

R1 p(R)dR, R is 
 R1 and Eq. 2 is dv�dt � �v3,
whereas with probability (1 � P1), R exceeds R1, and the process
is governed by Eq. 2b with c depending on R. Thus, noise affects
the number and location (on the v-axis) of stable states and alters
the potential barrier between states. Quite surprisingly, by
numerical integration of Eq. 2, we find (Fig. 2B) that random
interannual f luctuations of precipitation stabilize the system
around an unstable state of the underlying deterministic dynam-

ics (Fig. 3). This noise-induced stable state does not necessarily
coincide with the (deterministic) unstable state of equilibrium
(Fig. 2B, dashed lines). Within a relatively broad range of values
of R, the probability distribution of v exhibits only one mode (Fig.
3B) between 0 and 1. This stable state would not exist without
the random forcing (i.e., the interannual rainfall f luctuations) as
indicated by the shape of the deterministic potential function
(Fig. 2 A).

The modes of v (Fig. 2B, squares and crosses) are the
preferential states of the system and also can be determined
analytically through a probabilistic model able to capture the
fundamental properties of these dynamics. To this end, we take
c as a constant and replace it with the value c�, corresponding
to the conditional average of R for R 	 R1, c� � c(R�) with R�

� �R1

 Rp(R)dR��R1

 p(R)dR (the use of the average value of c
conditioned on R 	 R1 is motivated by the fact that c appears
only in Eq. 2b). The temporal dynamics of vegetation can be then
represented as

dv
d�

� f�v� � DM g�v�

� �v3 �
v�c� � v � c�v��p

� � �p
� DM

v�c�v � v � c��

� � �p
,

[4]

where DM is a zero-mean dichotomic Markov process (28),
assuming values �p and �. The two functions g(v) and f(v) are
determined in a way that dv�dt � �v3 when DM � �p, and
dv�dt � v(1 � v)(v � c�) when DM � �. The transition
probabilities between the two states of DM are k�p � (1 � P1)
and k� � P1. The states �p and � need to satisfy the condition
�pk� � �k�p � 0 for DM to be a zero-mean process. The
analytical solution of Eq. 4 provided by ref. 28 is used here to
calculate the modes of v and the stochastic potential, U, asso-
ciated with Eq. 4 (Fig. 2B, dotted lines). This analysis shows that
there is a range of values of �R� in which the stochastic dynamics
have only one preferential state, whereas the stable states, v �
0 and v � 1, of the deterministic dynamics become unstable. We
note that this behavior is a consequence of the threshold nature
of the system Eq. 2 forced by noise. The threshold at R � R1, i.e.,
abrupt disappearance of the stable vegetated state in dry
climates, is due to the feedback between soil moisture and
vegetation.

Discussion and Conclusions
We name the emergence of a statistically stable state (Fig. 2B)
noise-induced stability and interpret it as an effect of noise on

Fig. 3. Emergence of noise-induced statistically stable states in two examples of time series (A) and probability distributions (B) of vegetation generated by
Eq. 2 for two different values of �R� and �R � 0.6�R�. The other parameters are �R1� � 260 mm, �R2� � 360 mm, and a � 0.05 yr�1.

D’Odorico et al. PNAS � August 2, 2005 � vol. 102 � no. 31 � 10821

EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S



the shape of the potential function (29). This effect resembles the
case of noise-enhanced stability (30, 31), although it is here
observed through the emergence of unimodal behavior in the
distribution of v. This finding has important ecological implica-
tions. Climate fluctuations are often considered as a source of
disturbance (10) and, as such, are believed to enhance the
likelihood of catastrophic shifts to the desert state or to control
the transitions between preferential states in bistable dynamics
(11). The emergence of a noise-induced stable configuration
suggests that rainfall f luctuations unlock the system from these
preferential states and stabilize the dynamics at halfway between
conditions of bare soil and full vegetation cover.

Interestingly, Fig. 2B also shows that, for realistic values of
�R��R� (9, 32), noise-induced statistically stable states may exist
within a range of values of �R� wider than the interval [R1, R2]
of the underlying bistable deterministic dynamics and that this
range broadens with increasing noise intensities (i.e., with in-
creasing �R��R�). The possible existence of a noise-induced
statistically stable state for values of �R� 
 R1 prevents the
occurrence of the desert conditions that would take place in the
absence of rainfall f luctuations. In fact, v � 0 becomes unstable
in the presence of the stochastic forcing as evidenced both by

numerical simulations and by the shape of the stochastic poten-
tial (Fig. 2B). For even lower values of �R�, the noise-induced
stable state abruptly disappears, and the only stable configura-
tion becomes v � 0. The width of the interval in which
noise-induced stability exists decreases with decreasing values of
�R. The transition from noise-induced stable and bistable dy-
namics abruptly occurs as �R��R� tends to 0. For �R� 	 R2,
rainfall f luctuations act as a disturbance on vegetation, in that
the system is stable at values of v smaller than the stable state,
v � 1, of the deterministic dynamics. However, for relatively
large values of �R�, the mode of v reaches v � 1, suggesting that
the effect of climate fluctuations in subhumid and humid
ecosystems is minimal. The disappearance of bistability for R1 

�R� 
 R2 reduces the likelihood of catastrophic shifts to the
desert state. This finding implies that stronger disturbances (e.g.,
multidecadal trends in precipitation) are needed to drive the
system into the desert state, suggesting that interannual rainfall
variability enhances the resilience of dryland ecosystems.
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