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Reexamining experimental data of single-molecule fluorescence
correlation spectroscopy for cholesterol oxidase, we find that the
existing Michaelis–Menten models with dynamical disorder cannot
explain strong correlations between subsequent turnover cycles
revealed in the diagonal feature in the joint statistical distribution
of adjacent ‘‘on’’ times of this enzyme. We suggest that functional
conformational motions representing ordered sequences of tran-
sitions between a set of conformational substates are involved,
along with equilibrium conformational fluctuations in the turnover
cycle of cholesterol oxidase. A two-channel model of single-
enzyme dynamics, including a slow functional conformational
motion in one of the channels, is proposed that allows us to
reproduce such strong correlations.

Functionally important conformational motions are nonequi-
librium processes that lead from one state of a protein to

another and follow binding or dissociation of a ligand (1, 2). In
enzymes, such ordered slow conformational motions can con-
stitute an inherent part of a turnover cycle. Their functions may
consist of transporting a substrate to the active center inside a
macromolecule or bringing it into an appropriate arrangement
with respect to this center. Generally, these are physical intramo-
lecular motions that are needed for the occurrence of catalytic
conversion and must precede it. Using time-resolved x-ray
methods, functional conformational motions in Ha-ras p21
protein on GTP hydrolysis (3) and in a cytochrome P-450
enzyme (4) were recorded. In these experiments, enzyme mol-
ecules formed a crystal but could nonetheless perform their
characteristic catalytic cycles. Today, many examples of ordered
conformational motions in proteins, resolved by x-ray crystal-
lography methods, are known (5–7) (see also the database at
http:��molmovdb.mbb.yale.edu�molmovdb). Thermal confor-
mational f luctuations for single macromolecules in solution were
observed by using fluorescence correlation spectroscopy (FCS)
(9, 10) and FRET methods (11). Conformational movements of
enzymes in aqueous solvents could also be detected by NMR
(12). Using FRET measurements, nonequilibrium conforma-
tional changes in single molecules of T4 lysozyme under reaction
conditions were observed (13). Single-molecule FCS provides a
powerful tool for monitoring chemical transitions during cata-
lytic turnover cycles of individual molecules, and such experi-
ments have been already performed for a number of enzymes,
including cholesterol oxidase (14) and horseradish peroxidase
(15, 16). Simultaneous monitoring of chemical turnover cycles
and physical processes of conformational changes was not,
however, possible in the single-molecule experiments. There-
fore, functional conformational motions during a turnover cycle
for enzymic reactions in solution could not be identified. None-
theless, the presence of such functional motions can be deduced
by special statistical analysis of experimental data. In a previous
publication, such statistical analysis, based on the memory
functions (16), was performed for the enzyme horseradish
peroxidase (17). Here, we examine the data for cholesterol
oxidase and show that an essential statistical property of joint
probability distributions of adjacent cycle times in this enzyme is

not explained by the Michaelis-Menten (MM) mechanism with
thermal conformational f luctuations, but can be reproduced by
evoking functional conformational motions inside the turnover
cycle.

Models of Single-Enzyme Dynamics
In FCS experiments, only two discrete states where an enzyme
is fluorescent (‘‘on’’) or nonfluorescent (‘‘off’’) can be distin-
guished. Typically, an enzyme molecule is f luorescent while a
(fluorescent) product is already formed but has not yet left the
enzyme and stays within it so that an enzyme–product complex
exists (in cholesterol oxidase, the cofactor toggles between the
oxidized fluorescent and the reduced nonfluorescent state). The
experimental data represent long stochastic sequences of on and
off times for single-enzyme molecules. Thus, any conclusions
about the mechanisms of operation of enzymes and properties of
individual turnover cycles of an enzyme molecule can be drawn
only by complicated statistical analysis of this stochastic data.
Theoretical modeling of single-enzyme dynamics plays therefore
a principal role in the statistical analysis of the FCS data. By
constructing various stochastic models of enzyme dynamics, one
can generate stochastic sequences of on and off times for such
models and compare their statistical properties with the exper-
imental data. In this manner, appropriate theoretical models can
be identified and their parameters can be fitted.

The simplest model of enzymic activity corresponds to the
MM mechanism where an enzyme can be found in two states and
its activity consists of independent stochastic transitions between
them. In this classical view, the polypeptide chain is only
providing a kind of solid support for the catalytic center. The
MM model is known to lead to exponentially decaying autocor-
relation functions of the fluorescence signal. Such exponential
dependence is not seen in the FCS experiments, and therefore
this simple model is rejected.

In an extension of the MM model proposed by Xie and
coworkers (14, 18), equilibrium conformational f luctuations in
the enzyme molecule are taken into account. Such thermal
fluctuations, which are present even in the absence of the
reaction, correspond to random wandering among a set of
different conformational substates. Depending on a conforma-
tional substate, transition rates between two discrete functional
states in a MM model can differ. Thus, these rates become
randomly modulated with time, and experimentally observed
nonexponential behavior of autocorrelation functions is thus
reproduced. Statistical properties of enzymes in different MM
models with dynamic disorder caused by thermal conformational
f luctuations have been investigated (19, 20). Further extensions
of the MM model, using N conformational substates and assum-
ing thermal conformational f luctuations, have been considered
by Agmon (21) and Flomenbom et al. (22). In all of these models,
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functional conformational motions are not involved in the
theoretical description.

A different view on single-enzyme dynamics is that functional
conformational motions may play a principal role in a turnover
cycle. Binding of substrates can trigger a slow nonequilibrium
conformational motion inside an enzyme molecule, representing
an ordered sequence of conformational changes. This slow
mechanical motion is essential and the catalytic conversion of
the substrates followed by release of products cannot be com-
pleted until the whole sequence of conformational transitions
has taken place. Thus, not only the different chemical states but
also different physical functional conformational substates
should be distinguished inside a turnover cycle and included into
a model. This approach, advocated by Blumenfeld in ref. 23, has
previously been used in general theoretical studies on synchro-
nization of turnover cycles of individual enzymes in allosterically
regulated reactions (24–28). A theory with a sequence of
functional nonequilibrium states could well describe experimen-
tal data on optical synchronization of turnover cycles in the
photosensitive cytochrome P-450-dependent monooxygenase
system (29) and similar models were evoked to describe statistics
of nonequilibrium conformational changes in T4 lysozyme mol-
ecules (13). An analytical study of a model with nonequilibrium
cyclic transitions between many intermediate states has been
performed (8).

Is it possible to detect the presence of functional conforma-
tional motions by statistical analysis of FCS data? The difficulty
is that, in addition to functional motions, equilibrium thermal
fluctuations are always present. Such thermal fluctuations in-
volve a large number of conformational degrees of freedom in
a protein molecule, in contrast to a single pathway coordinate
characteristic of the functional motion. Therefore, even when
functional conformational motions are present, such statistical
properties as, for example, second-order autocorrelation func-
tions may still be dominated by thermal conformational f luctu-
ations and the effects of dynamical disorder. To identify func-
tional conformational motions, one needs statistical methods
sensitive to the presence of ordered characteristic motions, which
are repeated, with low variations, in many subsequent turnover
cycles.

Analyzing the data of FCS experiments with horseradish
peroxidase, Edman and Rigler (16) proposed to use a memory
function constructed through the third-order autocorrelation
function of the fluorescence signal. This memory function,
computed for the experimental data, contained new informa-
tion: slow damped oscillations absent in the standard plots of the
second-order autocorrelation functions. Subsequently, a dynam-
ical model of horseradish peroxidase including two functional
cyclic motions has been constructed, which successfully repro-
duced this behavior seen in the memory functions (17).

In the experimental study (14), not only the autocorrelation
functions of on times, but also joint probability distributions of
durations of two adjacent on times have been constructed. The
characteristic feature of such distributions was a narrow diagonal
feature, implying that a long turnover cycle was often followed
by another long cycle with a close duration. The original
interpretation (14, 18) of this behavior was that cholesterol
oxidase follows a MM mechanism with equilibrium conforma-
tional f luctuations that modulate the transition rates. Indeed, by
fitting the model parameters, the nonexponential behavior of the
second-order autocorrelation function of the fluorescence signal
and of on times could be reproduced. However, joint distribu-
tions of adjacent on times have not been constructed there. In the
next section, we construct such distributions for the 2 � 2 and
diffusive models of ref. 18 and show that they do not contain the
principal diagonal feature. Thus, these theoretical models, which
are based on the MM mechanism with thermal conformational
f luctuations and do not include functional conformational mo-

tions, do not reproduce some essential aspects of the experi-
mental data. In the following section, we first determine the joint
distributions of adjacent on times for a simple model with a cyclic
functional motion. Although they already contain a character-
istic diagonal feature, short turnover cycles are very rare in this
model, in contrast to the experimental data. Based on this
observation, we propose an improved model where an enzyme
toggles between two operation modes, one characterized by the
MM mechanism and the other one involving slow conforma-
tional relaxation along a functional path. Equilibrium confor-
mational f luctuations are taken into account here by assuming
that they modulate the velocity of motion along the functional
path. This model is able to reproduce both the behavior of
autocorrelation functions and the joint probability distributions
seen in the experiments.

MM Mechanism with Thermal Conformational Fluctuations
Cholesterol oxidase first oxidizes cholesterol (substrate S) to
cholesterone (product P), while the cofactor FAD is being
reduced to FADH2 (see Fig. 1 A). In the second part of this
reaction, oxygen is reduced to H2O2, while the cofactor FADH2
is being oxidized to FAD. In the experiments (14), the fluores-
cence radiation from the cofactor FAD is recorded, which is
f luorescent only in its oxidized form FAD (on state), whereas the
fluorescence is absent in the reduced form FADH2 (off state).
If the substrate concentration is so high that binding of a
substrate molecule to the enzyme occurs almost instantaneously,
this MM scheme can be simplified (Fig. 1C). Here, the half-
reaction of FADH2 oxidation is denoted by the green dashed line
in Fig. 1C. Because the enzyme remains nonfluorescent during
this part of reaction, its details are irrelevant for the statistics of
on times (i.e., subsequent durations of stay in the fluorescent
FAD�S state).

As pointed out by Xie and coworkers (14), this classical
description is not consistent with the experimental data. Ac-
cording to it, all reaction cycles are statistically independent and,
therefore, correlations between subsequent on times must be
absent. To explain observed correlations, equilibrium confor-
mational f luctuations in cholesterol oxidase have been taken
into account (14, 18). The characteristic correlation times of such
fluctuations were longer than the turnover time of the enzyme
so that its properties could remain modified within several
subsequent cycles. To account for such equilibrium fluctuations,
two models were proposed (18). In the 2 � 2 model, the enzyme
toggles between two equilibrium conformations E and E� with
different rate constants k21 and k22; the transition rates between
these conformations are kE and kE�, (Fig. 1B). In the diffusive
model (Fig. 1D), the rate constant k2 depends as

k2�x�t�� � k2
0e�x�t� [1]

on the effective conformational coordinate x obeying the sto-
chastic Langevin equation

dx
dt

� ��x � f� t�, [2]

where f(t) is the Gaussian white noise with �f(t)f(t�)� � 2���(t �
t�) and the zero mean value (�f� � 0). Introducing the stochastic
binary signal �(t), where � � 1 for the fluorescent on state and
� � 0 otherwise, the autocorrelation function can be defined as

C2�t� �
1

�	�2�
�	��t�	��0��, [3]

where 	�(t) � �(t) � ���. By fitting such autocorrelation
functions to the experimental data, the parameters of both
models were determined (18). For molecule A, they were k21 �
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9.0 s�1, k22 � 1.36 s�1, k�2 � 1.03 s�1, kE� � 0.13 s�1, kE �
0.0417 s�1 in the 2 � 2 model, and k2

0 � 3.8 s�1, k�2 � 1.2 s�1,
� � 0.1 s�1, � � 0.8 in the diffusive model. With the fitted
parameter values, the autocorrelation function r(m) of on times
separated by m cycles was constructed and was found to be
similar to the experimental dependence. This function is defined
(14, 18) as

r�m� �
1

�	�2�
�	�j	�j
m�, [4]

where �j is the duration of the fluorescent on state in the cycle
j and 	�j � �j � ���.

In the experiments (14), 2D probability distributions (histo-
grams) p(�j, �j
1) and p(�j, �j
10) for durations of adjacent on
times and the on times separated by 10 turnovers were con-
structed. The distribution p(�j, �j
1) contained the characteristic
diagonal feature, indicating that adjacent long on times were
strongly correlated. This feature was not seen in the respective
distribution of on times separated by 10 cycles, where only the
‘‘wings’’ extending along the horizontal and vertical axes re-
mained. In theoretical studies (14, 18), such probability distri-
butions were not determined and analyzed. We have constructed
the distributions p(�j, �j
1) and p(�j, �j
10) for the 2 � 2 model

(Fig. 2 C and D) and the diffusive model (Fig. 2 E and F) using
the fitted parameter values given above. We see that the
characteristic narrow diagonal feature is actually absent from
both theoretical models. For comparison, Fig. 2 A and B shows
such distributions for the two-state MM model (Fig. 1C) where
we have p(�j, �j
m) � p(�j)p(�j
m).

The absence of the diagonal feature is due to the fact that, in
both models, only one on state is included and the on time
essentially represents a waiting time for the spontaneous decay
of such a state. However, waiting times for decay processes are
always subject to strong fluctuations. Even if the decay rate
constant remains much reduced within several cycles because of
a conformational f luctuation, this property does not yet ensure
that long subsequent waiting times are strongly correlated, i.e.
their durations are close to one another as needed for the
presence of a narrow diagonal feature.

These conclusions do not contradict the results of the studies
(19, 20) where exact distributions of adjacent on times have been
analytically constructed for the two-channel model. The atten-
tion in these studies has been focused on the difference distri-
bution of on times, given by

���j, �j
1� � p��j, �j
1� � p��j�p��j
1�, [5]

where p(�) is the single-time probability distribution of on times.
This difference distribution can be viewed as an analogue of the

Fig. 1. Different theoretical models of enzyme operation. The complete MM model for cholesterol oxidase (A), the FAD reduction half reaction of the simplified
MM model (B), the 2 � 2 model (C), the diffusive model (D), the stochastic oscillator model (E), and the superposition model (F). Circular lines with arrows in the
last two models schematically represent motions along a functional path.
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memory function (16), which is, however, defined not for the
fluorescence signal, but for a stochastic sequence of subsequent
on times. If the memory and, thus, correlations between subse-
quent on times are absent, the difference function should vanish.
Thus, the difference distribution can also be viewed as the
non-Markovian part of the joint probability distribution of
adjacent on times.

It has been shown (19, 20) that difference distributions for the
MM models with dynamic disorder show some diagonal features.
Using the analytical results (19, 20), we have determined the
profile �(�, �) of the difference distribution along the diagonal
cross section (�j � �j
1) (Fig. 3A) and the full 2D contour plot
of the difference distribution (Fig. 3C) for the 2 � 2 model by
using the best-fit parameter values from ref. (18). It can be seen
that the difference distribution indeed displays a weak and broad
diagonal feature in this model.

However, in the experiments (14), the difference distributions
were not constructed and the diagonal features were already
seen for the total distributions of adjacent on times, i.e. for
p(�j, �j
1) � �(�j, �j
1) 
 p(�j)p(�j
1). Therefore, we have also
determined such total distributions for the 2 � 2 model, using
analytical results (19, 20) and the best-fit parameter values from
ref. 18. Fig. 3B (solid curve) displays the profile p(�, �) of the
total distribution along the diagonal cross section (�j � �j
1).
Additionally, in Fig. 3B we show by the dashed line the plot of
p(�j)p(�j
1) along the same cross section (the local distance
between the solid and the dashed curves corresponds to the local
difference shown in Fig. 3A). Because the difference is small, the
behavior of the total distribution is dominated by the Markovian
part p(�j)p(�j
1). Fig. 3D displays the full 2D contour plot of the
total distribution p(�j, �j
1), corresponding to Fig. 3B. The
diagonal feature is absent here. Note that the distribution in Fig.
3D, computed by using the exact analytical results (19, 20),
coincides with the distribution in Fig. 2C, which is constructed
by direct stochastic simulations of the 2 � 2 model. Using
analytical results (19, 20), we have systematically constructed
total joint probability distributions p(�j, �j
1) for the 2 � 2 model
in a broad range of parameters and could never see the char-
acteristic diagonal feature in such plots, in contrast to the plots
of the difference distributions.

Thus, our analysis reveals that the MM models with dynamical
disorder are not sufficient to explain the data of single-molecule
experiments. In the next section, such models are extended by
including functional conformational motions inside a turnover
cycle.

Fig. 2. 2D normalized histograms for the reduced MM model (A and B), the
2 � 2 model (C and D), the diffusive model (E and F), the stochastic oscillator
model (G and H), and the superposition model (I and J). (Left) Histograms
p(�j, �j � 1) for adjacent on times. (Right) Histograms p(�j, �j � 10) for on times
separated by 10 cycles are displayed. The model parameters are k2 � 3.9 s�1

(A and B), k21 � 9.0 s�1, k22 � 1.36 s�1, k � 2 � 1.03 s�1, kE� � 0.13 s�1, kE �

0.0417 s�1 (C and D), k2
0 � 3.8 s�1, k � 2 � 1.2 s�1, � � 0.1 s�1, � � 0.8 (E and

F), 	m � 4, 	p � 3.2, v0 � 2 s�1, � � 0.0466 s�1, � � 0.08, 
 � 0.01 s�1, k � 2 �

100 s�1 (G and H), and 	m � 4, 	p � 3.2, v0 � 2 s�1, � � 0.0466, s�1, � � 0.08,

 � 0.01 s�1, k2 � 7.8 s�1, k � 2 � 100 s�1, kE� � 200 s�1, and kE � 200 s�1 (I
and J). The scales along vertical and horizontal axes are from 0 to 2 s (A–D), 0
to 5 s (E and F), and 0 to 1 s (G–J).

Fig. 3. Statistical properties of the two-channel model. Difference distribu-
tion function �(�1, �2) of adjacent on times (C) and the corresponding total joint
distribution of adjacent on times (D), plotted by using the analytical solution
(19, 20) for the two-channel model. The same parameters as in Fig. 2C.
Additionally, profiles �(�, �) (A) and p(�, �) (B, solid line) of these distributions
are displayed. The dashed curve (B) shows the Markovian part p2(�) of the joint
probability distribution.
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Cyclic Functional Conformational Motions
In the first scheme shown in Fig. 1E, after completion of the
backward FADH2 oxidation half reaction (denoted by a green
dashed line), the enzyme immediately starts its new reaction
cycle by binding substrate S and forming the enzyme–substrate
complex E–FAD�S. In contrast to the MM scheme (Fig. 1C), the
enzyme–substrate complex should pass here through a definite
sequence of functional conformational substates until the
enzyme–product complex E–FADH2�P is formed and the prod-
uct P is released. The series of conformational transitions
between subsequent substates represents a functional confor-
mational motion inside the molecule; it is denoted by a thick
circular line with an arrow in Fig. 1E. Generally, the functional
motion is not terminated with the release of the product, and
E–FADH2 should pass through some other conformational
substates before it reaches a conformation where the FADH2
oxidation half reaction may start. The enzyme is fluorescent only
inside the part of its cycle (red) until the substrate is converted
into the product and the fluorescent cofactor switches to its
nonfluorescent form (blue).

In a rough approximation, this functional intramolecular
motion can be described as diffusive downhill drift along an
effective conformational phase coordinate 	 obeying the sto-
chastic Langevin equation

d	

dt
� �

�U
�	

� �� t� , [6]

where U is an effective phase-dependent potential. The func-
tional motion represents a process of slow conformational
relaxation which begins from the initial phase state 	 � 0 and
ends when the final state 	 � 	m is reached; the product is
released in the state 	 � 	p. The Gaussian white noise �(t) with
��(t)�(t�)� � 2
�(t � t�) takes into account short-time thermal
fluctuations inside the molecule. In addition to such rapid
fluctuations, the molecule possesses dynamical disorder that is
caused by equilibrium conformational f luctuations. These slow
fluctuations are also present while the enzyme undergoes relax-
ation; they involve conformational degrees of freedom that are
different from the coordinate 	 of the functional motion. Similar
to ref. 18, we can take them into account by assuming that the
potential U � U(	, x) depends on an additional conformational
coordinate x that obeys Eq. 2. For simplicity, we assume that the
potential U has a constant slope, i.e. the drift velocity v �
��U��	 is independent from the phase. This drift velocity,
which is related to transitions between different conformational
substates along the directed functional path, depends on the
conformational coordinate x as (cf. Eq. 1)

v�t� � v0e�x�t�. [7]

If x is large, the drift velocity is reduced and the cycle time
increases. If the correlation time of x(t) is larger than the cycle
duration, this increase is maintained for several cycles.

2D probability distributions of on times for this stochastic
oscillator model are shown in Fig. 2 G and H. The narrow
diagonal feature is already present in such distributions, but they
do not show the wings extending along both axes, which are seen
in the experimental plots (14). Such wings indicate that a long on
time is often followed by a much shorter on time and vice versa.

The agreement with the experimental data is further improved
in the second model shown in Fig. 1F. Here, the enzyme toggles
in the E–FADH2 stage between two conformations E and E�
opening different reaction pathways. In the state E, the turnover
cycle includes a functional conformational motion (as in Fig.
1E). In the state E�, the enzyme follows a MM scheme with a
single rate-limiting transition (as in Fig. 1C). The probability
distributions of on times for this superposition model are dis-

played in Fig. 2 I and J. In the distribution of on times in adjacent
cycles, they contain both the diagonal feature and the wings. In
the distribution of on times separated by 10 cycles, the diagonal
feature is missing. Fig. 4 shows the autocorrelation functions
r(m) of on times separated by m turnover cycles in the single-
cycle and the superposition models. Both the histograms (Fig. 2
I and J) and the autocorrelation function (Fig. 4) for the
superposition model qualitatively agree with the experimental
data (cf. figures 3 and 4a in ref. 14).

For the on times, separated by 10 turnover cycles, correlations
should already be absent. Therefore, the histogram in Fig. 2 J
shows, effectively, the product p(�1)p(�2) of two single-time
distributions. This means that the difference between the his-
tograms in Fig. 2 I and J should correspond to the non-
Markovian part �(�j, �j
1) defined by Eq. 5. Hence, the diagonal
feature is contained to the non-Markovian part of the joint
probability distribution of adjacent on times. In contrast to the
MM models, it is strong and located in a region where the
Markov part p(�1)p(�2) is already small. This diagonal feature is
associated with the channel where the functional motion, char-
acterized by the drift along a conformational coordinate, is
present. For this channel, the turnover time is long. The second
channel with the MM dynamics is fast. The turnover cycles
proceeding through this channel give rise to the part of the
probability distribution located near �1 � �2 � 0. The enzyme
randomly toggles between the two channels, and the wings in the
histogram correspond to the events when a short MM cycle is
followed by a long cycle with a functional motion or vice versa.

Conclusions and Discussion
This study indicates that functional conformational motions
inside a turnover cycle, along with thermal conformational
f luctuations, were probably present in the single-molecule ex-
periments (14). Their fingerprint is the presence of a diagonal
feature in the joint distribution of durations of adjacent on times,
found in the experiments. Whereas the MM models with dy-
namics disorder caused by thermal fluctuations successfully
reproduce the behavior of autocorrelation functions in such
experiments, they do not yield such characteristic diagonal
features. The disagreement is not accidental and should be
expected for any kind of a MM model. In such models, on times
represent waiting times for a single stochastic transition. When
slow conformational f luctuations are included, the transition
rate becomes temporally modulated and may stay decreased over
several subsequent turnover cycles, leading to significantly
longer waiting times. This is enough to explain the presence of

Fig. 4. The autocorrelation function r(m) of on times calculated for the
oscillator model (squares) and the superposition model (triangles). The pa-
rameter values are the same as in Fig. 2 G and H and I and J, respectively.
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correlations between subsequent on times and the nonexponen-
tial decay of temporal correlations. However, the presence of a
narrow diagonal feature in experimental histograms further
requires that two adjacent long waiting times should have close
durations, which is not true for any MM model, even if the
transition rates are temporally modulated. Pronounced narrow
diagonal features in the experimental data indicate that slow
functional conformational motions should be involved in the
turnover cycle of cholesterol oxidase. Instead of having a single
rate-limiting transition, in this case a protein molecule has to
pass through a definite sequence of conformational substates
before catalytic substrate conversion is completed. The total on
time then represents a sum of many independent waiting times
for subsequent stochastic transitions between substates, and its
statistical dispersion gets reduced.

Our analysis does not reject the original theoretical models of
cholesterol oxidase by Xie and coworkers (18) but shows how
they can be extended to incorporate functional conformational
motions. Indeed, by comparing the enzyme mechanisms de-
picted in Fig. 1 B and F, significant similarities are obvious. In
both schemes, the enzyme has two channels characterized by
characteristic times that differ by an order of magnitude. In both
schemes, the enzyme is toggling between the fast and the slow
channels. However, in the original scheme, both channels follow
the MM mechanism and correspond to a single transition,
whereas the enzyme goes through a definite sequence of con-
formational transitions in the slow channel in our model. It is this
property of the superposition model that allows us to reproduce
the diagonal feature in the joint probability distributions. Note
that some details of the model may still be changed without
altering the principal results. In this study, we only wanted to
demonstrate that the inclusion of functional motions can qual-
itatively improve the theoretical predictions.

On the other hand, our proposed model for cholesterol
oxidase bears similarities with the previous model for horserad-
ish peroxidase (17). In both models, an enzyme can follow two
different pathways. When a product molecule is released, a short
continuous cycle (in horseradish peroxidase) or a rapid MM
cycle can follow. However, if this short cycle has not taken place
within a relatively short time after the product release, a much
longer path with a functional conformational motion is entered.
It is this slow path that was responsible for the appearance of
slow oscillations in the memory function for horseradish perox-
idase and gives rise to a narrow diagonal feature in the joint
probability distribution of adjacent on times in cholesterol
oxidase.

The possible presence of functional conformational motions
inside enzymic turnover cycles, known from direct x-ray time-
resolved observations of enzymic activity in crystals, has so far
been largely ignored in theoretical interpretations of single-
enzyme dynamics based on the data of fluorescence correlation
spectroscopy. In our previous publications (16, 28) and in this
article, we have demonstrated that the presence of such motions
can be deduced from these data by using special methods of
statistical analysis. We have shown that, for both horseradish
peroxidase (28) and cholesterol oxidase, functional conforma-
tional motions should be taken into account to explain essential
qualitative features contained in the data. It would be interesting
to apply such approaches for the statistical analysis and inter-
pretation of single-molecule experimental data for other
enzymes.

This article is dedicated to the memory of Benno Hess. This work was
partly supported by Peter and Traudl Engelhorn Stiftung zur Förderung
der Biotechnologie und Gentechnik.
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