Skip to main content
. Author manuscript; available in PMC: 2025 Jun 1.
Published in final edited form as: Addiction. 2024 Mar 14;119(6):1059–1070. doi: 10.1111/add.16472

TABLE 2.

Mixed linear analyses to predict weekly alcohol consumption.

Predictors β (SE) 95% CI P df F P
CARE Model 1A
 Time variable 3, 275 17.09 <0.001
  Intercept 2.00 (3.29) (1.39, 2.61) <0.001
  Quit day −0.13 (0.53) (−0.21, −0.04) 0.003
  Week 4 post-quit −0.31 (0.58) (−0.41, −0.21) <0.001
  Week 26 post-quit −0.38 (0.71) (−0.51, −0.25) <0.001
Break Free Model 1B
 Time variable 2, 265 12.08 <0.001
  Intercept 2.68 (0.41) (1.87, 3.50) <0.001
  Week 4.5 post-quit −0.31 (0.07) (−0.44, −0.18) <0.001
  Week 26 post-quit −0.28 (0.09) (−0.45, −0.11) 0.002
PNS Model 1C
 Time variable 3, 162 10.21 <0.001
  Intercept 1.28 (0.42) (0.44, 2.12) <0.001
  Quit day −0.19 (0.07) (−0.32, −0.06) 0.004
  Week 3 post-quit −0.43 (0.08) (−0.58, −0.27) <0.001
  Week 26 post-quit −0.34 (0.10) (−0.54, −0.14) 0.001

Note: In all three data sets, the baseline time point is the comparison group for the time variable results. F and the corresponding P provide results for the type III tests of the significance for the time categorical variable fixed effect.

Abbreviation: PNS, Por Nuestra Salud.