

Micronutrient deficiencies in patients with celiac disease: A systematic review and meta-analysis

International Journal of Immunopathology and Pharmacology Volume 39: 1–24 © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/03946320241313426 journals.sagepub.com/home/iji

Saad Lamjadli¹, Ider Oujamaa², Ikram Souli¹, Fatima ezzohra Eddehbi¹, Nadia Lakhouaja¹, Bouchra M'raouni¹, Abdelmouine Salami¹, Morad Guennouni², Moulay Yassine Belghali², Raja Hazime¹ and Brahim Admou^{1,2}

Abstract

This study aimed to characterize micronutrient deficiencies, including iron, ferritin, folic acid, vitamin D, zinc (Zn), vitamin B12, and copper, in patients with celiac disease, and evaluated the effects of these deficiencies on selected hematological parameters, including hemoglobin and mean corpuscular volume (MCV). Celiac disease (CeD), an immune-mediated disorder affecting the small bowel, is associated with genetic factors and micronutrient deficiencies. This meta-analysis was performed in accordance with the PRISMA guidelines. Literature searches of multiple databases retrieved 4140 studies, of which 45 were selected. Risk of Bias was performed in accordance with the STROBE checklist. Meta-analysis revealed a significant difference in hemoglobin levels between patients with CeD and controls (standardized mean difference (SMD) -0.59 (95% confidence interval (CI) -0.8459 to -0.3382); P=0.0003). Iron levels were lower in patients with CeD (SMD ≈ -0.4 (95% Cl -0.7385 to -0.0407); P=0.0334), as were ferritin (SMD -0.6358 (95% CI -0.8962 to -0.3755); P=0.0002), folic acid (SMD -0.5446 (95% CI -0.9749 to -0.1142); P=0.0187), and vitamin D (SMD -0.4011 (95% CI -0.8020 to -0.0001); P=0.0499) levels, while Zn levels were significantly reduced (SMD -1.1398 (95% CI -2.0712 to -0.2084); P=0.0242). No significant differences were found in MCV, or copper or vitamin B_{12} levels between patients with CeD and controls. This study highlighted significantly higher micronutrient deficiencies in patients diagnosed with CeD than in controls, underscoring the importance of systematic nutritional assessment and multidisciplinary management to address micronutrient deficiencies and minimize negative health impact(s).

Keywords

gastrointestinal disorders, gluten-related disorders, celiac disease, micronutrient deficiencies, meta-analysis

Date received: 11 June 2024; accepted: 22 December 2024

Introduction

Celiac disease (CeD) is a multifactorial condition influenced by genetic and environmental factors.^{1,2} More than 90% of patients with CeD carry the human leukocyte antigen (HLA)-DQ2 haplotype, whereas the remainder harbor HLA-DQ8. Although these genetic markers are necessary, they are insufficient for CeD ¹Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco ²Biosciences Research Laboratory, Faculty of Medicine and Pharmacy,

Cadi Ayyad University, Marrakech, Morocco

Corresponding author:

Saad Lamjadli, Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco. Email: saad.lamjadli@edu.uca.ma

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

genesis.^{3,4} Furthermore, the presence of single or double copies of HLA-DQB1*02 has been associated with an increased risk for developing CeD.5 Gluten consumption is the most important environmental factor in the pathological development of CeD; nevertheless, other factors, including viral infections, gut microbiota, and smoking, have also been implicated in its pathogenesis.^{3,4} CeD can occur at any age and has a wide range of symptoms. As a result, it is critical to make a diagnosis, not only in individuals experiencing conventional gastrointestinal symptoms, but also in those with extraintestinal clinical features because both forms can have significant and severe implications.¹ The only effective treatment for CeD is strict adherence to gluten-free diet (GFD). Noncompliance with GFD increases the risk for morbidity and mortality due to related illnesses such as infertility, bone ailments, and cancer. According to the 2013 American College of Gastroenterology guidelines, one of the most common complications of CeD at diagnosis is micronutrient deficiency, primarily caused by chronic malabsorption due to villous atrophy (VA) in the small intestine, leading to a significant reduction in the absorptive surface area.⁶ Therefore, micronutrient deficiency should be identified and assessed in patients with newly diagnosed CeD.7 Although a GFD generally leads to mucosal recovery, some patients with CeD undergoing long-term treatment may experience persistent VA on follow-up, with or without ongoing or recurrent symptoms.^{4,8} This persistent enteropathy appears to be more common in individuals >45 years of age,⁹ as indicated by recent findings in which age \geq 45 years was established as one of the independent variables predicting the persistence of VA,¹⁰ although it has also been described in 19% of younger patients.¹¹ Furthermore, the persistence of enteropathy may be exacerbated by poor adherence to a GFD, lack of nutrient fortification in gluten-free products, or generally lower nutritional value of these products,¹² which may further contribute to the persistence of micronutrient deficiencies in patients with CeD.13 Micronutrient deficiencies in patients with CeD are highly debated. As such, this study aimed to identify anomalies in micronutrient levels, including iron, ferritin, folic acid, vitamin D, zinc (Zn), vitamin B₁₂, and copper, in patients with CeD, and to assess the effects of these deficiencies on specific hematological parameters, such as hemoglobin and mean corpuscular

volume (MCV), which are indirectly influenced by deficiencies in iron, folate, and vitamin B_{12} .

Material and methods

Search strategy and study selection

This meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (i.e. "PRISMA") statement.¹⁴ A comprehensive literature search of the PubMed, Scopus, Google Scholar, and Web of Science databases for relevant studies, published between 1963 and December 2023, was conducted. The search was repeated until March 2024 to identify the most recent studies. The main search terms included "celiac disease," "celiac," "coeliac disease," "micronutrient," and "deficiency." Synonyms and alternative spelling methods were used in this study. A full search strategy is presented in Appendix 1. The results from all databases were aggregated using Zotero version 6.0.36 (Zotero.org). Five researchers independently reviewed titles and abstracts to identify potentially eligible studies for full-text review. All reviewers assessed the full text of the articles in detail. Disagreements were resolved by collaborative discussion, when required. In cases of persistent disagreement, the senior author made the final decision. The reference lists of the selected studies were also examined to identify additional, potentially eligible studies.

Inclusion and exclusion criteria

This meta-analysis included all studies reporting raw micronutrient values (mean and standard deviation (SD)) in both the CeD and control groups. Studies were included if they reported raw values for hemoglobin, MCV, iron, ferritin, folic acid, vitamin D, Zn, vitamin B_{12} , and copper in patients diagnosed with CeD according to the American College of Gastroenterology guidelines¹⁵) or in the control group. Case reports, case series, commentaries, letters to the editor, and studies that did not report data regarding the research question were excluded. The literature search had no language or data restrictions.

Data extraction

Data were independently extracted by five investigators and entered into spreadsheet software (Excel, Professional Office LTSC Plus, Microsoft Corporation, Redmond, WA, USA). Additionally, we employed various packages from R software to support further data analysis and processing.^{16–26} Relevant data were extracted independently by five investigators and conflicts were resolved by consensus discussion. The following data were extracted from each study: country; author; year of publication; study design; total number of patients included in the CeD and control groups; mean age in the CeD and control groups; mean and SD values for hemoglobin, MCV, iron, ferritin, folic acid, vitamin D, Zn, vitamin B₁₂, and copper in the CeD and control groups.

Statistical analysis

Meta-analyses were based on a single effect size of the standardized mean. Values were transformed from available statistics (mean and SD) to determine a standardized effect size (Hedges' g statistic) using a comprehensive meta-analysis software packages.^{27–33} Hedges' g is related to Cohen's d and can be interpreted using the same conventions for effect size, as follows: small (0.2), medium (0.5), and large (0.8).^{34,35} An added benefit of Hedges' g is the correction of the biases found in small sample sizes.^{34,35} The randomeffects model was applied in the present metathereby adopting a conservative analysis. approach that assumes that the true effect size may vary from study to study, enabling the results to be generalized to populations beyond the study samples.^{35,36} The Q statistic was used to measure the homogeneity of effect sizes across the studies.^{35,37} A significant Q statistic indicates dissimilar effect sizes across studies, suggesting that differences in methodology or population samples could introduce variance in the results between studies.³⁷ To complement the Q test, the I^2 statistic was also calculated, which provides an index of the degree of heterogeneity across studies, in which I^2 signifies the percentage of the total variability in effect sizes due to the variability between studies and not due to sampling errors within studies.³⁸ Percentages of approximately 25% ($I^2=25$), 50% ($I^2=50$), and 75% ($I^2=75$) were interpreted as low, medium, and high heterogeneity, respectively.^{35,39} Egger's regression test was used to assess publication bias.⁴⁰ Rucker's Limit was used to adjust for suspected publication bias using a random-effects model.^{35,41} Sensitivity tests (right-skewness and flatness tests) were used to correct for publication bias.^{35,42} Outliers were addressed by considering studies as outliers if their confidence interval (CIs) did not overlap

Systematic review registration

with those of the pooled effects.^{35,43}

This review has been registered on PROSPERO: CRD42024544466. Available from: https://www. crd.york.ac.uk/prospero/display_record. php?ID=CRD42024544466

Results

Study selection

The initial literature search retrieved 4140 studies, of which 145 were assessed by full-text review, and 45 were eligible for inclusion, with perfect agreement between investigators. The study selection process is illustrated in Figure 1.

Study characteristics

The studies selected were from North America (n=7), South America (n=3), Northern Europe (n=2), Western Europe (n=19), Southern Europe (n=4), Eastern Europe (n=2), Southern Asia (n=4), Western Asia (n=3), and Northern Africa (n=1) (Appendices 2 and 3).

Pooled effect size of hemoglobin in the CeD versus control groups

Twelve studies including 545 patients with CeD and 915 controls were included in this meta-analysis. The pooled results revealed that the SMD of hemoglobin level in CD patients was—0.59 (95% CI –0.8459 to –0.3382]; P=0.0003) compared with the controls (Table 1; Figure 2). Publication bias was not observed (Table 1.b in Supplemental material). The corrected real effect size estimate was –0.7684 (95% CI –1.2658 to –0.2709) (Table 1.c in Supplemental material). The sensitivity (*p*-curve test) of the estimated SMD was significant (Table 1.d in Supplemental material). (Detailed data for Tables 1.b to 1.d are provided in the Supplemental material).

Pooled effect size of iron in the CeD versus control groups

Eight studies including 519 patients with CeD and 14,566 controls were assessed. The pooled results of

Figure 1. Flowchart of study selection process.

Table I.	Pooled effect size	(SMD)	results ((Hemoglobin)).
----------	--------------------	-------	-----------	--------------	----

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k* = 18)	-1.1020	-1.8346, -0.3695	0.0055	95.8	94.5–96.8
Influencing cases removed** (k = 12)	-0.5920	-0.8459, -0.3382	0.0003	62.2	29.3–79.8

k = number of studies.

**Removed as outliers: Ballestero et al.,⁴⁸ Nestares et al.,⁴⁵ Işikay et al.,⁴⁶ Kalayci et al.,⁴⁷ Caterina et al.,⁴⁸ Kapur et al.⁴⁹

Study	Coeliac	Group	Total	Control	Group	Total	Weight	Std. Mean Difference	Std. Mean Difference
olduy	mean	00	Total	mean	00	Total	Treight	1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
Armagan et al	11.72	1.2800	9	12.02	1.3900	72	6.2%	-0.22 [-0.91; 0.48]	
Ince et al	12.20	1.7000	35	14.00	1.3000	32	8.3%	-1.17 [-1.69; -0.65]	— —
Xavier-Valente el al	13.60	1.2000	20	13.40	1.3000	39	8.0%	0.16 [-0.38; 0.70]	
Karaman et al	7.30	1.4000	12	8.70	1.6000	238	7.4%	-0.88 [-1.46; -0.29]	
Narang et al	6.40	1.1300	6	7.80	1.8000	146	5.0%	-0.78 [-1.60; 0.04]	
Piatek-Guziewicz et a	12.60	1.8000	29	13.40	1.4000	25	7.9%	-0.48 [-1.03; 0.06]	
Tokgoz et al	11.30	1.7000	52	12.30	1.1000	50	10.1%	-0.69 [-1.09; -0.29]	— <u>—</u>
Bayrak et al	12.09	1.7100	228	13.56	1.1500	135	12.8%	-0.96 [-1.19; -0.74]	
Weintraub et al	12.40	1.4000	47	13.10	1.1000	66	10.4%	-0.56 [-0.95; -0.18]	
Troch et al	12.50	1.1000	20	13.70	1.6200	20	6.6%	-0.85 [-1.50; -0.20]	
Botero-Lopez et al	12.60	2.1800	73	13.60	1.4000	36	10.0%	-0.51 [-0.91; -0.10]	— <u>—</u>
Rafet Mete et al	12.39	2.5100	14	12.22	2.0900	56	7.4%	0.08 [-0.51; 0.66]	
Total (95% CI)		1.5	545		1	915	100.0%	-0.59 [-0.85; -0.34]	
Heterogeneity: Tau ² = 0	.0908; C	$hi^2 = 29.$	09, df =	= 11 (P ·	< 0.01); l	= 62%	Ď		
									-1.5 -1 -0.5 0 0.5 1 1.

Figure 2. Forest plot of hemoglobin levels.

Table 2. Pooled effect size (SMD) results (Iron).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=10)	-0.7639	-1.3829, -0.1448	0.0210	91.6	86.7–94.7
Influencing cases removed** (k=8)	-0.3896	-0.7385, -0.0407	0.0334	74.4	48.2–87.4

k = number of studies.

**Removed as outliers: Nestares et al.,⁴⁵ Caterina et al.⁴⁸

the meta-analysis revealed that the SMD of iron level in CD patients was -0.4 (95% CI -0.7385 to -0.0407; P=0.0334) compared with the controls (Table 2; Figure 3). Publication bias was not observed (Table 2.b in Supplemental material). The estimated corrected true effect size was -0.0837 (95% CI -0.7317to 0.5643) (Table 2.c in Supplemental material). The sensitivity (*p*-curve test) of the estimated SMD was significant (Table 2.d in Supplemental material). (Detailed data for Tables 2.b to 2.d are provided in the Supplemental material).

Pooled effect size of ferritin in the CeD versus control groups

Twelve studies, including 799 patients with CeD and 1442 controls, were included. The pooled results of meta-analysis revealed that the SMD of ferritin levels in CeD patients was -0.6358 (95% CI -0.8962 to -0.3755; P=0.0002) compared with the controls (Table 3; Figure 4). No publication bias was observed (Table 3.b in Supplemental material). The estimated corrected true effect size was -0.3885 (95% CI -0.8173 to 0.0403) (Table 3.c in Supplemental material). The estimated SMD was

significant (Table 3.d in Supplemental material). (Detailed data for Tables 3.b to 3.d are provided in the Supplemental material).

Pooled effect size of folic acid in the CeD versus control groups

Ten studies, including 834 patients with CeD and 16,378 controls, were included in this meta-analysis. The pooled results revealed that the SMD of folic acid in patients with CeD was -0.5446 (95% CI -0.9749 to -0.1142; P=0.0187) compared with the controls (Table 4; Figure 5). No publication bias was observed (Table 4.b in Supplemental material). The estimate of the corrected true effect size was -0.2540 (95% CI -0.7134 to 0.2055) (Table 4.c in Supplemental material). The estimated SMD was significant (Table 4.d in Supplemental material). (Detailed data for Tables 4.b to 4.d are provided in the Supplemental material).

Pooled effect size of vitamin D in the CeD versus control groups

Fifteen studies were analyzed, including 655 patients with CeD and 14,717 controls. The

	Coelia	c Group		Contro	ol Group			Std. Mean Difference	e Std. Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Kapur et al	84.69	24.5000	21	90.89	23.0000	21	9.9%	-0.26 [-0.86; 0.35]	
Ince et al	46.00	26.0000	35	75.00	30.0000	32	11.3%	-1.02 [-1.54; -0.51]	
Karaman et al	13.40	4.6000	12	17.40	6.6000	238	10.2%	-0.61 [-1.19; -0.03]	
Bayrak et al	67.07	38.0200	228	71.39	37.7000	135	15.9%	-0.11 [-0.33; 0.10]	
Botero-Lopez et al	150.00	51.8750	73	145.00	52.5000	36	13.1%	0.10 [-0.30; 0.49]	
Ballestero-Fernández et al	100.50	10.1250	64	107.50	11.8250	74	14.0%	-0.63 [-0.97; -0.29]	
UnalpArida et al	90.10	40.2800	26	86.50	62.2300	14000	13.3%	0.06 [-0.33; 0.44]	
Karnani et al	58.24	29.6300	60	80.63	21.1800	30	12.2%	-0.82 [-1.27; -0.36]	-
Total (95% CI)			519			14566	100.0%	-0.39 [-0.74; -0.04]	
Heterogeneity: Tau ² = 0.1268	$3; Chi^2 =$	27.36, df =	= 7 (P <	0.01); I ²	= 74%				
									-1.5 -1 -0.5 0 0.5 1

Figure 3. Forest plot of iron levels.

Table 3. Pooled effect size (SMD) results (Ferritin).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=13)	-0.9097	-1.5621, -0.2573	0.0103	86.4	78.5–91.4
Influencing cases removed ^{**} ($k = 12$)	-0.6358	-0.8962, -0.3755	0.0002	70.3	46.4-83.6

k = number of studies.

**Removed as outliers: Caterina et al.48

	Coelia	c Group		Contre	ol Group			Std. Mean Difference	Std. Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Kapur et al	38.25	14.4000	21	88.30	36.8000	21	5.3%	-1.76 [-2.48; -1.04]	
Haapalahti et al	14.00	19.5000	26	27.00	30.5000	29	7.2%	-0.49 [-1.03; 0.04]	
Emami et al	7.20	0.7000	13	8.41	3.2000	117	6.8%	-0.39 [-0.97; 0.18]	
Baghbanian et al	11.13	8.7100	24	11.13	9.0600	378	8.8%	0.00 [-0.41; 0.41]	
Karaman et al	2.00	0.7000	12	5.20	3.2000	238	6.6%	-1.02 [-1.61; -0.43]	
Volkanet al	25.20	24.8000	72	39.60	38.4000	30	8.5%	-0.49 [-0.92; -0.05]	
işikay et al	16.48	12.5700	226	24.11	5.7800	268	11.8%	-0.80 [-0.99; -0.62]	
Bayrak et al	21.61	20.7200	228	28.23	16.7600	135	11.4%	-0.34 [-0.56; -0.13]	
Weintraub et al	15.30	12.1400	47	28.20	17.6200	66	9.1%	-0.82 [-1.21; -0.43]	
Botero-Lopez et al	14.25	23.9000	73	28.70	41.9250	36	8.9%	-0.46 [-0.87; -0.06]	
Nestares et al	43.10	7.7000	43	50.30	6.5000	68	8.9%	-1.02 [-1.43; -0.62]	
Rafet Mete et al	13.23	11.2300	14	28.34	35.8700	56	6.6%	-0.46 [-1.05; 0.13]	
Total (95% CI)			799			1442	100.0%	-0.64 [-0.90; -0.38]	+
Heterogeneity: Tau ²	= 0.095	7; Chi ² = 3	37.07, 0	df = 11 ((P < 0.01);	$l^2 = 70$	%		
		,							-2 -1 0 1

Figure 4. Forest plot of ferritin levels.

Table 4. Pooled effect size (SMD) results (Folic acid).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=11)	-0.3981	-0.9547, 0.1585	0.1421	93.4	90–95.6
Influencing cases removed ^{**} ($k = 10$)	-0.5446	-0.9749, -0.1142	0.0187	88.3	80.6–93.0

**k* = number of studies.

**Removed as outliers: Ballestero-Fernández et al.44

	Coelia	c Group		Contro	ol Group			Std. Mean Difference	е	Sto	d. Me	an Di	ffere	nce	
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C		IV,	, Ran	dom,	95%		
Hallert et al	2.20	0.8000	5	4.90	1.5000	13	4.9%	-1.89 [-3.13; -0.65]							
Haapalahti et al	91.00	40.2500	26	109.00	55.0000	29	9.5%	-0.37 [-0.90; 0.17]			-	-			
Dickey et al	12.90	14.2000	100	24.10	10.0000	200	11.5%	-0.97 [-1.22; -0.71]			++				
Hadithi et al	9.70	2.3250	51	12.10	1.3250	50	10.3%	-1.26 [-1.68; -0.83]		-	-				
Wierdsma et al	15.10	18.1000	80	20.40	15.0000	25	10.2%	-0.30 [-0.75; 0.15]			-	-			
Xavier Valente el al	17.50	8.0000	20	29.00	9.4000	39	9.1%	-1.27 [-1.86; -0.68]		-					
Volkan et al	7.70	6.2000	72	8.17	8.0000	30	10.4%	-0.07 [-0.49; 0.36]				-			
lşikay et al	12.55	18.0700	226	16.50	12.4400	268	11.8%	-0.26 [-0.44; -0.08]							
Bayrak et al	8.60	5.3300	228	8.18	2.6900	135	11.7%	0.09 [-0.12; 0.31]				-			
UnalpArida et al	18.90	14.0290	26	19.80	24.8600	15589	10.6%	-0.04 [-0.42; 0.35]				+			
Total (95% CI)			834			16378	100.0%	-0.54 [-0.97; -0.11]			-				
Heterogeneity: Tau ² =	= 0.2685	$5; Chi^2 = 7$	7.07, df	= 9 (P <	: 0.01); I ² =	88%				1	1		1	1	
									-3	-2	-1	0	1	2	

Figure 5. Forest plot of folic acid levels.

Table 5. Pooled effect size (SMD) results (Vitamin D).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=19)	-1.3599	-3.0166, 0.2968	0.1017	99.2	99.1–99.4
Influencing cases removed** $(k = 15)$	-0.4011	-0.8020, -0.0001	0.0499	85.8	78.2–90.8

*k = number of studies.

**Removed as outliers: Bayrak et al.,⁵⁰ Stein et al.,⁵¹ Jamnik et al.,⁵² Björck et al.⁵³

pooled results revealed that the SMD of vitamin D in patients with CeD was -0.4011 (95% CI -0.8020 to -0.0001; P=0.0499) compared with the controls (Table 5; Figure 6). Publication bias was not observed (Table 5.b in Supplemental material). The sensitivity test (right-skewness) for the estimated SMD was significant (Table 5.c in Supplemental material). (Detailed data for Tables 5.b to 5.c are provided in the Supplemental material).

Pooled effect size of Zn in the CeD versus control groups

Eight studies were analyzed, including 343 patients with CeD and 14,250 controls. The pooled results of the meta-analysis revealed that the SMD of Zn in patients with CeD was -1.1398 (95% CI -2.0712 to -0.2084; P=0.0242) compared with the controls (Table 6; Figure 7). There was publication bias (Table 6.b in Supplemental material). However, the sensitivity test (right-skewness) for the estimated SMD was significant (Table 6.c in Supplemental material). (Detailed

data for Tables 6.b to 6.c are provided in the Supplemental material).

Pooled effect size of MCV in the CeD versus control groups

Six studies comprising 134 patients with CeD and 806 controls were included in this metaanalysis. The pooled results of the meta-analysis revealed that the SMD of MCV in patients with CeD was -0.16 (95% CI-0.8 to 0.47; P > 0.05) compared with the controls (Table 7; Figure 8). Publication bias was not observed (Table 7.b in Supplemental material). The sensitivity test (right skewness) for the estimated SMD was significant (Table 7.d in Supplemental material). (Detailed data for Tables 7.b to 7.d are provided in the Supplemental material).

Pooled effect size of copper in the CeD versus control groups

Six studies comprising 189 patients with CeD and 3396 controls. The pooled results revealed that the

	Coelia	c Group		Contro	ol Group			Std. Mean Difference	Std. Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Corazza et al	15.10	5.8700	23	27.00	4.7500	15	5.4%	-2.13 [-2.96; -1.31] -	
Armagan et al	12.11	1.9700	9	17.07	5.2200	72	5.8%	-0.98 [-1.70; -0.27]	
Szymczak et al	29.90	18.3000	35	39.50	19.0000	36	6.7%	-0.51 [-0.98; -0.04]	
/illanueva et al	27.04	9.9100	24	26.20	10.4500	50	6.7%	0.08 [-0.41; 0.57]	-
Setty-Shah et al	74.70	27.2000	18	65.30	26.0000	49	6.5%	0.35 [-0.19; 0.90]	
lwosu et al	70.60	25.7000	25	65.40	26.1000	49	6.7%	0.20 [-0.28; 0.68]	
olkanet al	17.20	11.3500	72	15.80	10.5750	30	6.9%	0.12 [-0.30; 0.55]	
Piatek-Guziewicz A et al	19.40	9.0000	29	29.70	5.1000	25	6.3%	-1.36 [-1.96; -0.76]	— —
okgoz et al	19.80	7.9000	52	27.60	10.4000	50	6.9%	-0.84 [-1.25; -0.43]	
Veintraub et al	26.00	8.1400	47	27.00	10.3700	66	7.0%	-0.10 [-0.48; 0.27]	÷
ionetti et al	25.30	8.0000	131	31.60	13.7000	131	7.4%	-0.56 [-0.81; -0.31]	
Jyanıkoglu et al	134.33	44.3500	40	118.43	48.0000	40	6.8%	0.34 [-0.10; 0.78]	
Ballestero-Fernández et al	34.70	8.8500	64	33.70	11.1500	74	7.2%	0.10 [-0.24; 0.43]	
InalpArida et al	79.70	26.5000	26	69.20	99.6800	14000	7.0%	0.11 [-0.28; 0.49]	
Karnani et al	20.29	8.9700	60	33.30	10.9400	30	6.7%	-1.33 [-1.82; -0.85]	
Total (95% CI)			655			14717	100.0%	-0.40 [-0.80; -0.00]	-
leterogeneity: Tau ² = 0.4273	$3; Chi^2 =$	98.90, df =	= 14 (P	< 0.01);	$ ^2 = 86\%$				
									-2 -1 0 1 2

Figure 6. Forest plot of vitamin D levels.

Table 6. Pooled effect size (SMD) results (Zn).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k**=9)	-1.1398	-2.0712; -0.2084	0.0242	92.7%	87.4-95.7%
Influencing cases removed* ($k=8$)	-1.4092	-2.4145; -0.4039	0.0129	94.6%	91.4-96.6%

**k = number of studies.

*Removed as outlier: Idris et al.54

04	Coelia	c Group	T	Contro	ol Group	Tetal	14/-1-1-4	Std. Mean Difference	Std. Mean Difference
study	Mean	SD	Iotai	Mean	SD	Iotai	weight	IV, Random, 95% CI	IV, Random, 95% CI
Naveh et al	62.00	11.0000	34	100.00	15.0000	31	12.0%	-2.88 [-3.58; -2.17]	
Ince et al	70.00	14.0000	32	101.00	20.0000	35	12.4%	-1.76 [-2.33; -1.19]	
Rawal et al	71.90	19.3000	48	74.90	29.2000	48	12.8%	-0.12 [-0.52; 0.28]	
Fathi et al	75.97	12.0000	30	92.83	18.0000	30	12.5%	-1.09 [-1.63; -0.54]	
ldris et al	0.28	0.1776	40	1.00	0.2450	40	12.1%	-3.31 [-3.99; -2.63]	_ <mark></mark>
BoteroLopez et al	82.50	20.0000	73	90.00	16.2500	36	12.8%	-0.39 [-0.80; 0.01]	
UnalpArida et al	75.10	10.9700	26	82.20	34.3300	14000	12.8%	-0.21 [-0.59; 0.18]	
Karnani et al	16.52	21.1800	60	102.13	80.6300	30	12.6%	-1.72 [-2.22; -1.21]	-
Total (95% CI)			343			14250	100.0%	-1.41 [-2.41; -0.40]	
Heterogeneity: Tau	$^{2} = 1.35$	93; Chi ² =	129.15	df = 7 (P < 0.01);	$ ^2 = 95\%$	5	-	
5 ,					"				-2 0 2

Figure 7. Forest plot of zinc levels.

Table 7.	Pooled	effect	size	(SMD)	results	(MCV).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=8)	-1.12	-2.84, 0.59	> 0.05	95.5	93.2–97.0
Influencing cases removed ^{**} ($k=6$)	-0.16	-0.8, 0.47	> 0.05	79	53.4-88.3

*k = number of studies.

**Removed as outliers: Kalayci et al.,⁴⁷ Kapur et al.⁴⁹

Study	Mean	SD	Total	Mean	SD SI Group	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Hallert et al	95.00	16.0000	5	92.00	8.0000	13	11.3%	0.27 [-0.77: 1.31]	
Armagan et al	86.59	4.1000	9	87.66	4.9200	72	15.5%	-0.22 [-0.91; 0.47]	
Caterina et al	4.00	5.0000	20	78.00	72.0000	31	16.5%	-1.29 [-1.91; -0.67]	— <u>—</u>
Baghbanian et al	72.57	6.2200	24	72.76	6.6400	378	19.3%	-0.03 [-0.44; 0.38]	
Karaman et al	59.60	4.7000	12	60.70	6.3000	238	17.1%	-0.18 [-0.76; 0.40]	
Ballestero-Fernández et al	91.10	1.5000	64	90.40	1.6750	74	20.2%	0.44 [0.10; 0.77]	
Total (95% CI)			134			806	100.0%	-0.16 [-0.80; 0.47]	
Heterogeneity: Tau ² = 0.2845	5; Chi ² =	= 24.04, df	= 5 (P	< 0.01)	$ ^2 = 79\%$				
									-1.5 -1 -0.5 0 0.5 1 1.5

Figure 8. Forest plot of MCV levels.

Table 8. Pooled effect size	(SMD) results	(Copper).
-----------------------------	---------------	-----------

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k*=7)	-0.6429	-1.5264, 0.2407	0.1253	88.6	79–93.8
Influencing cases removed** (k=6)	-0.3221	-1.0000, 0.3557	0.2763	67.5	22.8–86.3

k = number of studies.

**Removed as outlier: Guerrieri et al.55

SMD of copper in patients with CeD was -0.6429 (95% CI -1.5264 to 0.2407; P > 0.05) compared with controls (Table 8; Figure 9). No publication biases were observed.

Pooled effect size of vitamin B_{12} in the CeD versus control groups

Ten studies were conducted to assess the vitamin B₁₂ levels, including 838 patients with CeD and 16,437 controls. The pooled results of meta-analysis revealed that the SMD of vitamin B₁₂ in patients with CeD was 0.01 (95% CI –0.0121 to 0.15; P > 0.05) compared with controls (Table 9; Figure 10). No publication bias was observed (Table 9.b in Supplemental material). The estimated corrected true effect size was 0.1563 (95% CI –0.0205 to 0.3331; P=0.0831) (Table 9.c in Supplemental material). (Detailed data for Tables 9.b to 9.c are provided in the Supplemental material).

Risk of bias

Risk of bias was calculated using STROBE.⁵⁶ Using this tool, the studies were assessed using a 22-point checklist and grouped into low, moderate, and high risks of bias. Studies with a score <50 were considered to be poor, 50–70 as fair, 70–85 as

good, and ≥ 85 as excellent. Studies with a high risk of bias were excluded (Supplemental Table 1).

Subgroup analysis

A subgroup analysis was used to investigate the sources of heterogeneity in the meta-analyses. The included studies were separated into ≥ 2 subgroups and the pooled effect sizes observed in these subgroups were examined to determine whether they differed significantly from one subgroup to another. The results of this subgroup analysis revealed significant unexplained heterogeneity within each subgroup as well as smaller and/or unequal data points. Consequently, the validity of the effect estimate for each subgroup is questionable, implying that the subgroup analysis is unlikely to yield valuable results (results not shown).

Discussion

Results of the present meta-analysis revealed that the pooled global effect of hemoglobin, ferritin, iron, and MCV was reduced in patients with CeD compared with the control group (-0.6 (95% CI -0.8459 to -0.3382), P=0.0003; -0.6358 (95% CI -0.8962 to -0.3755), P=0.0002; -0.4 (95% CI -0.7385 to -0.0407), P=0.0334; and -0.16

	Coelia	c Group		Contro	ol Group			Std. Mean Difference	St	d. Me	an Dif	fferen	ce
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV	, Ran	dom,	95%	CI
Solomons et al	51.10	13.0000	20	74.30	9.7000	10	12.1%	-1.88 [-2.79; -0.96] -	-	_			
Jameso et al	19.00	4.6000	8	20.70	7.4000	10	11.8%	-0.26 [-1.19; 0.68]		-		_	
Ince et al	105.00	16.0000	35	105.00	16.0000	32	18.4%	0.00 [-0.48; 0.48]			+		
Idris et al	0.61	0.2790	40	0.70	0.2790	40	19.0%	-0.31 [-0.75; 0.13]		-			
UnalpArida et al	116.50	7.0700	26	118.40	62.9400	3274	19.8%	-0.03 [-0.42; 0.36]			-		
Karnani et al	90.95	17.6200	60	90.95	17.6200	30	19.0%	0.00 [-0.44; 0.44]			-		
Total (95% CI)			189			3396	100.0%	-0.32 [-1.00; 0.36]					
Heterogeneity: Ta	$u^2 = 0.24$	22: Chi ² =	15.38.	df = 5 (F	< 0.01); I	$^{2} = 679$	6	-	[1		1	
		,	,						-2	-1	0	1	2

Figure 9. Forest plot of copper levels.

Table 9. Pooled effect size (SMD) results (Vitamin B12).

Type of Meta-Analyses	g (SMD)	95% CI	Р	l² (%)	95% CI
Main meta-analysis (k=10)	0.01	-0.12, 0.15	> 0.05	20	0.0–65.7

	Coeli	ac Group		Cont	rol Group			Std. Mean Difference	•	Std. Me	ean Dif	ference	
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Rar	ndom,	95% CI	
Armagan et al	300.04	54.2300	9	340.78	131.4000	72	3.1%	-0.32 [-1.02; 0.37]			_		
Haapalahti et al	325.00	150.2500	26	313.00	117.2500	29	5.0%	0.09 [-0.44; 0.62]					
Dickey et al	274.10	170.9000	100	248.60	104.6000	200	16.1%	0.20 [-0.05; 0.44]				-	
Hadithi et al	230.50	30.6250	51	234.50	21.8750	50	8.3%	-0.15 [-0.54; 0.24]			-	-	
Wierdsma et al	231.20	104.3000	80	272.60	117.4000	25	6.5%	-0.38 [-0.83; 0.07]			-+		
Xavier Valente el al	271.10	89.0000	20	257.30	90.6000	39	4.8%	0.15 [-0.39; 0.69]		_	-		•
Volkan et al	384.00	172.0000	72	393.00	228.0000	30	7.2%	-0.05 [-0.47; 0.38]			-		
lşikay et al	350.72	137.0400	226	327.55	124.3200	268	21.9%	0.18 [0.00; 0.35]				-	
Bayrak et al	344.32	185.5800	228	363.20	204.1800	135	18.5%	-0.10 [-0.31; 0.12]		-			
UnalpArida et al	610.00	280.4000	26	615.10	698.1000	15589	8.5%	-0.01 [-0.39; 0.38]			-		
Total (95% CI)			838			16437	100.0%	0.01 [-0.12; 0.15]			+		_
Heterogeneity: Tau ² :	= 0.0110;	$Chi^2 = 11.2$	1, df =	9 (P = 0.	26); $l^2 = 20^{\circ}$	%			1	1	1	1	
									-1	-0.5	0	0.5	

Figure 10. Forest plot of vitamin B12 levels.

(95% CI –0.8 to 0.4), P > 0.05, respectively). Furthermore, iron deficiency anemia (IDA) is not unusual because it is one of the main manifestations of CeD and is the predominant abnormality in approximately 45% of individuals with subclinical forms.⁵⁷ Notably, Simon et al.⁵⁸ reported that IDA could be the sole presenting feature in 39% of patients with CeD, underscoring its significance in the clinical assessment of this disorder. Furthermore, patients with CeD presenting with anemia at diagnosis have more advanced disease and a slower dietary response than those without anemia. This observation was reported in an excellent review of the extraintestinal manifestations of CeD, highlighting that when anemia is the primary reason for presentation of the disease, patients exhibit higher anti-transglutaminase levels, lower serum cholesterol, and higher degrees of VA than those presenting with diarrhea alone.⁵⁹ Therefore, CeD should be considered as a possible cause of IDA in all patients. The underlying reason why some patients with CeD develop IDA while others do not remains poorly understood. However, it may be associated with deficiencies in specific regulatory proteins that are crucial for iron absorption at the enterocyte level, reflecting an imbalance between iron loss and absorption.^{59,60} Several disorders can affect the upper gastrointestinal tract, which is crucial for the absorption of dietary iron.⁶¹ GFD is recognized as the primary intervention for managing mild cases of IDA in CeD patients.⁶² However, the recovery of iron levels through GFD alone can be slow, particularly in severe cases.⁶³ To accelerate the restoration of iron stores, oral iron supplementation may be implemented, which is especially beneficial for patients with mild enteropathy or those with inconsistent adherence to the GFD.⁵⁹ In cases of advanced enteropathy, oral iron supplementation may lead to adverse effects, necessitating alternative strategies such as intravenous iron administration or methods to improve tolerability.⁵⁹ Therefore, while dietary measures, such as a high-iron diet, can complement therapy, they are insufficient as standalone treatments and cannot replace the essential role of iron supplementation in managing anemia in CeD.59

CeD is a well-known cause of duodenal intraepithelial lymphocytosis, inflammation, and VA. It is mostly observed in the duodenum and upper jejunum. This may explain why folate deficiency has been reported in 8-85% of adult patients with CeD.⁶⁴ The disparity in prevalence may be explained, in part, by the technical problems of measuring "folate" and "folic acid" because the bioavailability of folic acid is twice that of folate.⁶⁵ Furthermore, patients with CeD exhibit megaloblastic anemia and neurological symptoms, and their chance of acquiring this deficiency is >5times higher than that of healthy individuals. This was most likely caused by loss of villi in the proximal small intestine. As a result, the greater the degree of VA, the greater the folate insufficiency.⁶⁶ Furthermore, a GFD appears to improve or even normalize folic acid levels in those affected by CeD.⁶ Our results are consistent with those of previous reports, given that the global pooled effect of folic acid in our study was -0.5446 (95% CI -0.9749 to -0.1142; P=0.0187) in the CeD group compared with that in the control group.

The small intestine plays a critical role in Zn homeostasis. Zn deficiency in patients with CeD can be caused by an increased endogenous loss of this mineral rather than by abnormal Zn absorption.⁶⁷ This cumulative loss can occur through several mechanisms, including the formation of insoluble Zn complexes with fat and phosphate, exudation of Zn protein complexes into the intestinal lumen, massive loss of intestinal secretions, and impaired Zn absorption resulting from damage to the intestinal epithelial cell membrane.⁶⁸ Some CeD

symptoms (e.g. anorexia and slow growth rate) may be linked to Zn deficiency. In recent years, Zn has emerged as a critical micronutrient for maintaining the integrity of the intestinal mucosa, immunity, and growth. Moreover, patients with CeD have been shown to have lower plasma Zn concentrations.^{68–73} Similar results were found in our meta-analysis, in which the pooled effect of Zn was -1.1398 (95% CI -2.0712 to -0.2084; P=0.0242) in the CeD group compared with that in the control group.

CeD is linked to a wide range of endocrine concerns,^{74,75} the most prevalent of which are low bone mineral density (BMD), osteopenia, and osteoporosis,⁷⁶ resulting in a high risk for bone fracture(s). Therefore, BMD measurements in adult patients are recommended.77 Although BMD was not considered in this meta-analysis, we found that the pooled effect of vitamin D in the CeD group was -0.4011 (95% CI - 0.8020 to -0.0001; P = 0.0499)compared with that in the control group. In light of these results, the *P*-value analysis and *p*-curve results (*P*-Full and *P*-half \leq 0.05), revealed that the pooled effect is not completely spurious; it is not merely a "mirage" produced by selective reporting.³⁵ Our results suggest that vitamin D levels are low in patients with CeD. In addition to repairing and protecting the skeletal system during calcium metabolism, other roles of vitamin D have recently been reported. Vitamin D plays an important modulatory role in inflammation, immunological processes, and mucosal barrier control. In this context, vitamin D can cause immunological disorders and the role of vitamin D in immune regulation may be a major element in the initiation of $CeD.^{78}$ Nonetheless, the results of studies investigating vitamin D levels and screening for vitamin D deficiency in patients are conflicting.⁷⁹ Most vitamin D investigations on adult CeD have demonstrated that 25(OH) D insufficiency improves with a GFD, regardless of supplementation.⁸⁰ The active form of 1,25 (OH) vitamin D was within normal range at the time of CeD diagnosis. It has been suggested that a GFD can boost vitamin D levels without the need for supplementation.⁸¹ However, our results provide evidence that patients with CeD should undergo nutritional assessment and receive nutritional counseling, as well as a strict GFD, and that dietary supplements should be recommended for those with severe deficiencies.

True deficits are difficult to demonstrate due to the complicated interplay between the elements. For

example, folate requires vitamin B₁₂ activation; therefore, low intracellular folate levels may result from vitamin B₁₂ deficiency.⁸² Vitamin B₁₂ deficiency appears to be rare in patients with CeD because it binds to intrinsic factors in the duodenum and the complex is absorbed in the terminal ileum, which is supposed to be protected from harm in CeD. Although the precise etiology of vitamin B_{12} deficiency in CeD remains unclear, potential contributing factors, such as reduced gastric acid production, small intestinal bacterial overgrowth (SIBO), autoimmune gastritis, and subtle dysfunction of the distal small intestine, have been suggested.⁶⁷ Moreover, Dahele and Gosh,⁸³ reported that 41% of adults with untreated CeD exhibited vitamin B₁₂ deficiency despite the absence of intrinsic factor antibodies in all patients, with only onethird experiencing concurrent folate deficiency. We found no evidence of compromised vitamin B₁₂ status (the pooled effect of vitamin B_{12} in the CD group was 0.01 (95% CI -0.12 to 0.15); P > 0.05). This could be due to higher dietary intake. Some patients with CeD have been reported to use vitamin and mineral supplements (vitamin B-complex) before being diagnosed with CeD.84

Primary dietary copper deficit is uncommon and is mostly caused by malabsorption syndrome. In our study, the pooled effect of copper in the CeD group was -0.6429 (95% CI -1.5264 to 0.2407)]. Although our results were not statistically significant, the trend was toward copper deficiency, which is consistent with many previous studies.54,71,85,86 An Iranian study reported in 2013 that the mean levels of Zn in patients with CeD were significantly lower than those in control group $(75.97 \pm 12 \text{ vs})$ 92.83 ± 18 , P < 0.0001).⁶⁸ Similarly, Singhal et al. noted that serum Zn levels in patients with newly CeD were significantly reduced diagnosed $(0.64 \pm 0.34 \text{ mg/mL vs } 0.94 \pm 0.14 \text{ mg/mL in con-}$ trols (95% CI -0.44 to -1.4)).73 Similarly, a recent study by Adam et al. showed that Zn levels were decreased in 59.4% of patients with CeD compared with 33.2% in controls.⁷⁰

Micronutrient deficiencies observed in patients with CeD can be attributed to several factors related to disease pathophysiology. The CeD pathway is characterized by alterations in the small intestine, including intraepithelial lymphocytosis, crypt hyperplasia, and VA, which reduce nutrient absorption.⁸⁷ Moreover, inflammation and small intestinal mucosal damage lead to loss of absorptive surfaces and nutrient malabsorption.⁸⁸ Refined flours used in GFDs often lack fortification, potentially contributing to nutritional deficiencies in this population.^{89,90} In addition, GFDs commonly followed by patients with CeD are characterized by reduced intake of cereals, fruits, and vegetables, along with increased consumption of meat and meat-derived products.91 Whole-grain barley, rye, and wheat products are typically replaced by specialized gluten-free alternatives, which have been shown to possess lower nutritional value compared with their gluten-containing counterparts.⁹¹ These gluten-free products are often associated with higher levels of fats, particularly saturated and trans-fats, as well as refined sugars, phosphorus, and salt, which can reduce the intake of fibers, complex carbohydrates, and proteins.⁹¹ Furthermore, the inadequacy of dietary habits specific to this group may exacerbate the issue.^{92,93} In addition, the low demand for nutritional counseling from registered dietitians may foster insufficient food intake, particularly in rural areas. Despite being straightforward, GFD implementation poses significant challenges for patients and their families,⁹⁴ one of which is the risk for crosscontamination, often leading to unintentional gluten transgression. These inadvertent exposures can perpetuate VA and contribute to ongoing nutritional deficiencies in individuals with CeD even when they adhere to a strict GFD.95 Registered dietitians play a critical role in guiding patients with CeD by adopting a GFD that is not only healthy but also interesting and practical, helping to mitigate these challenges.⁹⁶ While it is acknowledged that a GFD entails dietary restrictions, patients who receive nutritional counseling from a registered dietitian can achieve a well-balanced and healthy diet. The dietary recommendations for a healthy GFD should align closely with those of a regular healthy diet, emphasizing nutritious and safe alternatives to cereal-based foods while avoiding excessive consumption of highly processed products. Such a diet should prioritize the intake of fresh, unprocessed, and naturally gluten-free foods, including a variety of fruits, vegetables, and proteins, preferably from plant sources such as legumes, whole grains, pseudocereals, tubers, and nuts.⁹¹ As such, a tailored diet could be beneficial in restoring a balanced gut microbiota.⁶⁷ Our study has the merit of using a standardized meta-analytical methodology (with random-effects analyses) to assess the impact of CeD on different micronutrient categories. However, there were several limitations, including the lack of sample size calculation, the high level of heterogeneity observed among the included studies, and the disproportionate number of studies addressing the nutrients analyzed.

Conclusion

The present analysis revealed substantial differences in micronutrient levels between patients with CeD and controls. Decreases in hemoglobin, ferritin, iron, folic acid, Zn, and vitamin D levels highlight the multidimensional characteristics of nutritional deficits in CeD. These findings highlight the crucial role of a thorough nutritional evaluation and intervention techniques in CeD care to address a wide range of micronutrient deficits. Thus, it is critical to use a multidisciplinary strategy that includes registered dietitian counseling, supplementation when needed, and continued monitoring to reduce the negative health effects of micronutrient deficiencies in patients with CeD. Furthermore, additional studies should focus on identifying the underlying processes that contribute to micronutrient deficits in patients with CeD, as well as investigating novel techniques to improve nutrient absorption and overall nutritional status in this susceptible group.

Acknowledgements

We gratefully acknowledge Professor Daniel S. Quintana for his significant contributions to this study. His insightful feedback and dedication to rigorous scientific inquiry greatly enhanced the quality of this research.

Author contributions

Conceptualization: Saad Lamjadli and Ikram Souli; Methodology: Ider Oujamaa, Morad Guennouni, Moulay Yassine Belghali, Raja Hazime and Brahim Admou; Software: Saad Lamjadli and Morad Guennouni; Data curation: Ikram Souli, Fatima ezzohra Eddehbi, Nadia Lakhouaja, Bouchra M'raouni and Abdelmouine Salami; Writing—Original Draft, Saad Lamjadli, Ider Oujamaa, Ikram Souli; Validation: Ider Oujamaa, Moulay Yassine Belghali, Raja Hazime and Brahim Admou; Writing—Review and Editing, all authors; Supervision: Brahim Admou.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Trial registration

Not applicable.

ORCID iD

Saad Lamjadli (D https://orcid.org/0000-0002-3285-089X

Data availability

All data supporting the findings of this meta-analysis are available in the Appendix.

Supplemental material

Supplemental material for this article is available online.

References

- Saturni L, Ferretti G and Bacchetti T (2010) The gluten-free diet: Safety and nutritional quality. *Nutrients* 2: 16–34.
- Beas R, Altamirano-Farfan E, Izquierdo-Veraza D, et al. (2024) Prevalence of celiac disease in systemic lupus erythematosus, sjogren syndrome and systemic sclerosis: A systematic review and meta-analysis. *Digestive and Liver Disease* 56(9): 1475–1482.
- 3. Lindfors K, Ciacci C, Kurppa K, et al. (2019) Coeliac disease. *Nature Reviews Disease Primers* 5: 3.
- 4. Lebwohl B, Sanders DS and Green PHR (2018) Coeliac disease. *Lancet* 391: 70–81.
- Capittini C, De Silvestri A, Rebu C, et al. (2019) Relevance of HLA-DQB1*02 allele in the genetic predisposition of children with celiac disease: Additional cues from a meta-analysis. *Medicina (B. Aires)* 55: 190.
- Kreutz JM, Adriaanse MPM, van der Ploeg EMC, et al. (2020) Narrative review: Nutrient deficiencies in adults and children with treated and untreated celiac disease. *Nutrients* 12(2): 500.

- Rubio-Tapia A, Hill ID, Kelly CP, et al. (2013) Clinical guidelines: Diagnosis and management of celiac disease. *American Journal of Gastroenterology* 108: 656–676.
- 8. Ciacci C, Ciclitira P, Hadjivassiliou, et al. (2015) The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. *United European Gastroenterology Journal* 3: 121–135.
- Lebwohl B, Murray JA, Rubio-Tapia, et al. (2014) Predictors of persistent villous atrophy in coeliac disease: A population-based study. *Alimentary Pharmacology & Therapeutics* 39: 488–495.
- Schiepatti A, Maimaris S, Raju SA, et al. (2023) Persistent villous atrophy predicts development of complications and mortality in adult patients with coeliac disease: A multicentre longitudinal cohort study and development of a score to identify high-risk patients. *Gut* 72(11): 2095–2102.
- 11. Leonard MM, Weir DC, DeGroote M, et al. (2017) Value of IgA TTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. *Journal of Pediatric Gastroenterology and Nutrition* 64: 286–291.
- Abdi F, Zuberi S, Blom JJ, et al. (2023) Nutritional considerations in celiac disease and non-celiac gluten/ wheat sensitivity. *Nutrients* 15(6): 1475.
- Vici G, Belli L, Biondi M, et al. (2016) Gluten free diet and nutrient deficiencies: A review. *Clinical Nutrition* 35: 1236–1241.
- 14. Page MJ, McKenzie JE, Bossuyt PM, et al. (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ* 372:n71.
- Rubio-Tapia A, Hill ID, Semrad C, et al. (2023) American college of gastroenterology guidelines update: Diagnosis and management of celiac disease. *American Journal of Gastroenterology* 118(1): 59–76.
- Wickham H, Averick M, Bryan J, et al. (2019) Welcome to the tidyverse. *Journal of Open Source Software* 4(43): 1686.
- Wickham H and Bryan J (2023) readxl: Read excel files. *R package version 1.4.3*. Available at: https:// CRAN.R-project.org/package=readxl
- Thompson C, Antal D, Parry J, et al. (2024) Spotifyr: R wrapper for the "Spotify" web API. *R package version 2.2.5*. Available at: https://CRAN.R-project.org/ package=spotifyr
- Iannone R, Cheng J, Schloerke B, et al. (2024) gt: Easily create presentation-ready display tables. *R pack-age version 0.11.1*. Available at: https://CRAN.R-project.org/package=gt
- Mock T (2023) gtExtras: Extending "gt" for beautiful HTML tables. *R package version 0.5.0*. Available at: https://CRAN.R-project.org/package=gtExtras
- Wickham H, Pedersen T and Seidel D (2023) Scales: Scale functions for visualization. *R package version*

1.3.0. Available at: https://CRAN.R-project.org/ package=scales

- 22. Chang W (2023) Webshot2: Take screenshots of web pages. *R package version 0.1.1*. Available at: https://CRAN.R-project.org/package=webshot2
- 23. Pebesma E and Bivand R (2023) *Spatial Data Science: With Applications in R.* Chapman and Hall/ CRC: Boca Raton.
- 24. Massicotte P and South A (2023) Rnaturalearth: World map data from natural earth. *R package version 1.0.1*. Available at: https://CRAN.R-project.org/ package=rnaturalearth
- 25. Arel-Bundock V, Enevoldsen N and Yetman C (2018) Countrycode: An R package to convert country names and country codes. *Journal of Open Source Software* 3(28): 848.
- Slowikowski K (2024) ggrepel: Automatically position non-overlapping text labels with "ggplot2". *R package version 0.9.5*. Available at: https://CRAN.R-project.org/package=ggrepel
- 27. Balduzzi S, Rücker G and Schwarzer G (2019) How to perform a meta-analysis with R: A practical tutorial. *Evidence-Based Mental Health* 22: 153–160.
- Harrer M, Cuijpers P, Furukawa, et al. (2019) dmetar: Companion R package for the guide "doing metaanalysis in R. *R package version 0.0.9000*. Available at: http://dmetar.protectlab.org/
- 29. Viechtbauer W (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software* 36(3): 1–48.
- Peterson BG and Carl P (2020) Performance analytics: Econometric tools for performance and risk analysis. *R package version 2.0.4*. Available at: https:// CRAN.R-project.org/package=PerformanceAnalytics
- 31. Schwarzer G, Carpenter J and Rücker G (2023) metasens: Statistical methods for sensitivity analysis in meta-analysis. *R package version 1.5-2*. Available at: https://CRAN.R-project.org/package=metasens
- McGuinness LA (2019). robvis: An R package and web application for visualising risk-of-bias assessments. Available at: https://github.com/mcguinlu/robvis
- Borenstien M, Hedges LV, Higgins J, et al. (2000) *Comprehensive Meta-Analysis*. Englewood, NJ: Biostat.
- 34. Cohen J (1988) Set correlation and contingency tables. *Applied Psychological Measurement* 12(4): 425–434.
- Harrer M, Cuijpers P and Furukawa TA (2021) *Doing* Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman & Hall/CRC Press.
- 36. Hedges LV and Olkin I (1958). *Statistical Methods for Meta-Analysis*. Orlando: Academic Press.
- Shaddish WR and Haddock CK (1994) Combining estimates of effect size. In: Cooper H and Hedges LV (eds) *The Handbook of Research Synthesis*. New York, NY: Russel Sage Foundation, pp.261–285.

- 38. Quintana DS, McGregor IS and Guastella AJ (2013) A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: Implications for cardiovascular risk. *Alcoholism: Clinical and Experimental Research* 37: E23–E29.
- Higgins JP, Thompson SG, Deeks JJ, et al. (2003) Measuring inconsistency in meta-analyses. *BMJ* 327: 557–560.
- 40. Egger M and Smith GD (1998) Bias in location and selection of studies. *BMJ* 316: 61–66.
- 41. Rücker G, Schwarzer G, Carpenter JR, et al. (2011) Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. *Biostatistics* 12: 122–142.
- 42. Simonsohn U, Nelson LD and Simmons JP (2014) P-curve and effect size: Correcting for publication bias using only significant results. *Perspectives on Psychological Science* 9(6): 666–681.
- Viechtbauer W and Cheung MW (2010) Outlier and influence diagnostics for meta-analysis. *Research Synthesis Methods* 1(2): 112–125.
- 44. Ballestero-Fernández C, Varela-Moreiras G, Úbeda N, et al. (2021) Nutritional status in Spanish adults with celiac disease following a long-term gluten-free diet is similar to non-celiac. *Nutrients* 13: 1626.
- 45. Nestares T, Martín-Masot R, Labella A, et al. (2020) Is a gluten-free diet enough to maintain correct micronutrients status in young patients with celiac disease? *Nutrients* 12: 844.
- IŞıkay S, IŞıkay N, Per H, et al. (2018) Restless leg syndrome in children with celiac disease. *The Turkish Journal of Pediatrics* 60(1): 70–75.
- 47. Kalayci AG, Kanber Y, Birinci A, et al. (2005) The prevalence of coeliac disease as detected by screening in children with iron deficiency anaemia. *Acta Paediatrica* 94: 678–681.
- De Caterina M, Grimaldi E, Di Pascale G, et al. (2005) The soluble transferrin receptor (sTfR)-ferritin index is a potential predictor of celiac disease in children with refractory iron deficiency anemia. *Clinical Chemistry and Laboratory Medicine* 43(1): 38–42.
- 49. Kapur G, Patwari AK, Narayan S, et al. (2003) Iron supplementation in children with celiac disease. *Indian Journal of Pediatrics* 70: 955–958.
- Bayrak NA, Volkan B, Haliloglu B, et al. (2020) The effect of celiac disease and gluten-free diet on pubertal development: A two-center study. *Journal* of *Pediatric Endocrinology and Metabolism* 33(3): 409–415.
- 51. Stein EM, Rogers H, Leib A, et al. (2015) Abnormal skeletal strength and microarchitecture in women with celiac disease. *Journal of Clinical Endocrinology and Metabolism* 100(6): 2347–2353.

- 52. Jamnik J, Jenkins DJ and El-Sohemy A (2018) Biomarkers of cardiometabolic health and nutritional status in individuals with positive celiac disease serology. *Nutrition and Health* 24(1): 37–45.
- Björck S, Brundin C, Karlsson M, et al. (2017) Reduced bone mineral density in children with screening-detected celiac disease. *Journal of Pediatric Gastroenterology and Nutrition* 65(5): 526–532.
- 54. Idris H, Elzein AM and Elxein HO (2019) Evaluation of zinc and copper levels in sudanese patients with celiac disease in red sea state. *Pakistan Journal of Medical and Health Sciences* 13(4): 1120–1123.
- 55. Guerrieri A, Catassi C, Pasquini E, et al. (1986) Plasma zinc levels in children with chronic diarrhoea. *European Journal of Pediatrics* 145(6): 563–564.
- 56. Cuschieri S (2019) The STROBE guidelines. *Saudi Journal of Anaesthesia* 13(Suppl 1): S31–S34.
- Bottaro G, Cataldo F, Rotolo N, et al. (1999) The clinical pattern of subclinical/silent celiac disease: An analysis of 1026 consecutive cases. *The American Journal of Gastroenterology* 94: 691–696.
- Simón E, Molero-Luis M, Fueyo-Díaz R, et al. (2023) The gluten-free diet for celiac disease: Critical insights to better understand clinical outcomes. *Nutrients* 15(18): 4013.
- Montoro-Huguet MA, Santolaria-Piedrafita S and Cañamares-Orbis P (2021) Iron deficiency in celiac disease: Prevalence, health impact, and clinical management. *Nutrients* 13(10): 3437.
- Brittenham GM, Hoffman R, Benz EJ Jr, et al. (1995) Disorders of iron metabolism: Iron deficiency and overload. In: Hoffman R, Benz EJ Jr and Shattil SJ (eds.) *Haematology: Basic Principles and Practice*, 2nd ed. Edinburgh: Churchill Livingstone, pp.492–523.
- Lombard M, Chua E and O'Toole P (1997) Regulation of intestinal non-heme iron absorption. *Gut* 40: 435– 439.
- Saukkonen J, Kaukinen K, Koivisto AM, et al. (2017) Clinical characteristics and the dietary response in celiac disease patients presenting with or without anemia. *Journal of Clinical Gastroenterology* 51: 412–416.
- 63. Stefanelli G, Viscido A, Longo S, et al. (2020) Persistent iron deficiency anemia in patients with celiac disease despite a gluten-free diet. *Nutrients* 12: 2176.
- 64. Unalp-Arida A, Liu R and Ruhl CE (2022) Nutrient intake differs among persons with celiac disease and gluten-related disorders in the United States. *Scientific Reports* 12: 5566.
- 65. Suitor CW and Bailey LB (1999) Food folate vs. synthetic folic acid: A comparison. *Journal of the American Dietetic Association* 99: 285.
- 66. Kemppainen TA, Kosma VM, Janatuinen EK, et al. (1998) Nutritional status of newly diagnosed celiac disease patients before and after the institution of

a celiac disease diet–association with the grade of mucosal villous atrophy. *American Journal of Clinical Nutrition* 67: 482–487.

- 67. Melini V and Melini F (2019) Gluten-free diet: Gaps and needs for a healthier diet. *Nutrients* 11: 170.
- Fathi F, Ektefa F, Tafazzoli M, et al. (2013) The concentration of serum zinc in celiac patients compared to healthy subjects in Tehran. *Gastroenterology and Hepatology from Bed to Bench* 6(2): 92–95.
- 69. Altuntal B, Filik B, Ensari A, et al. (2000) Can zinc deficiency be used as a marker for the diagnosis of celiac disease in Turkish children with short stature? *Pediatrics International* 42: 682–684.
- Bledsoe AC, King KS, Larson JJ, et al. (2019) Micronutrient deficiencies are common in contemporary celiac disease despite lack of overt malabsorption symptoms. *Mayo Clinic Proceedings* 94(7):1253-1260. doi: 10.1016/j.mayocp.2018.11.036. PMID: 312 48695.
- Solomons NW, Rosenberg IH and Sandstead HH (1976) Zinc nutrition in celiac sprue. *The American Journal of Clinical Nutrition* 29: 371–375.
- MacMahon RA, Parker ML and McKinnon MC (1968) Zinc treatment in malabsorption. *Medical Journal of Australia* 2: 210–212.
- 73. Singhal N, Alam S, Sherwani R, et al. (2008) Serum zinc levels in celiac disease. *Indian Pediatrics* 45(4): 319.
- Uyanikoglu A, Eren MA, Aydoğan T, et al. Celiac disease prezenting with osteoporosis: A case report. *Euroasian Journal of Hepato-Gastroenterology* 3: A054,21.
- 75. Uyanıkoğlu A, Aydoğan T, Nar H, et al. (2014) Demographic and laboratory features of celiac patients in Sanliurfa region. *Journal of Current Gastroenterology* 183: 339–341.
- Krupa-Kozak U (2014) Pathologic bone alterations in celiac disease: Etiology, epidemiology, and treatment. *Nutrition* 30: 16–24.
- Lucendo AJ and García-Manzanares A (2013) Bone mineral density in adult coeliac disease: An updated review. *Revista Española De Enfermedades Digestivas* 105: 154–162.
- Vici G, Camilletti D and Polzonetti V (2020) *Possible* role of vitamin D in celiac disease onset. Nutrients 12: 1051.
- 79. Dos Santos S and Lioté F (2017) Osteoarticular manifestations of celiac disease and non-celiac gluten hypersensitivity. *Joint Bone Spine* 84: 263–266.
- Lemieux B, Boivin M, Brossard JH, et al. (2001) Normal parathyroid function with decreased bone minerl density in treated celiac disease. *Canadian Journal* of Gastroenterology and Hepatology 15: 302–307.
- 81. Zingone F and Ciacci C (2018) The value and significance of 25(OH) and 1,25(OH) vitamin D serum

levels in adult coeliac patients: A review of the literature. *Digestive and Liver Disease* 50: 757–760.

- 82. Cuskelly GJ, Mooney KM and Young IS (2007) Folate and vitamin B12: Friendly or enemy nutrients for the elderly: Symposium on "Micronutrients through the life cycle." *Proceedings of the Nutrition Society* 66(4): 548–558.
- Dahele A and Ghosh S (2001) Vitamin B12 deficiency in untreated celiac disease. *The American Journal of Gastroenterology* 96: 745–750.
- Wierdsma NJ, van Bokhorst-de MA, Berkenpas M, et al. (2013) Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. *Nutrients* 5(10): 3975–3992.
- 85. Karnani P, Barupa R, Vishnoi SK, et al. Serum vitamin D, zinc, iron and copper levels in children with newly diagnosed coeliac disease. *Sri Lanka Journal* of Child Health 51(4): 519–524.
- Ince AT, Kayadibi H, Soylu A, et al. (2008) Serum copper, ceruloplasmin and 24-h urine copper evaluations in celiac patients. *Digestive Diseases and Sciences* 53: 1564–1572.
- Ferretti G, Bacchetti T, Masciangelo S, et al. (2012) Celiac disease, inflammation and oxidative damage. A nutrigenetic approach. *Nutrients* 4: 243–257.
- 88. Green PH and Jabri B (2006) Celiac disease. *Annual Review of Medicine* 57: 207–221.
- Hallert C, Grant C, Grehn S, et al. (2002) Evidence of poor vitamin status in coeliac patients on a glutenfree diet for 10 years. *Alimentary Pharmacology & Therapeutics* 16: 1333–1339.
- Pagano AE (2006) Whole grains and the gluten-free diet. *Practical Gastroenterology* 29: 66–78.
- Cardo A, Churruca I, Lasa A, et al. (2021) Nutritional imbalances in adult celiac patients following a glutenfree diet. *Nutrients* 13(8): 2877.
- Kupper C (2005) Dietary guidelines and implementation for celiac disease. *Gastroenterology* 128: S121–S127.
- Raymond N (2006) The gluten-free diet: An update for health professionals. *Practical Gastroenterology* 9: 73–91.
- 94. See J and Murray JA (2006) Gluten-free diet: The medical and nutrition management of celiac disease. *Nutrition in Clinical Practice* 21: 1–15.
- 95. Guennouni M, Admou B, El khoudri N, et al. (2022) Gluten contamination in labelled gluten-free, naturally gluten-free and meals in food services in low-, middle- and high-income countries: A systematic review and meta-analysis. *British Journal of Nutrition* 127(10): 1528–1542.
- 96. Garcia-Manzanares A and Lucendo AJ (2011) Nutritional and dietary aspects of celiac disease. *Nutrition in Clinical Practice* 26: 163–173.

- 97. Karaman K, Akbayram S, Kar S, et al. (2016) Prevalence of celiac disease in children with iron deficiency anemia in Van Lake Region of Turkey. *Pediatric Hematology and Oncology* 38: 143–146.
- Mete R, Oran M, Avcı BA, et al. (2021) The diagnostic utility of flow cytometry in celiac disease presented isolated iron deficiency anemia. *Turkish Journal of Gastroenterology* 32(11): 932–936.
- 99. Botero-Lopez J, Araya M, Parada A, et al. (2011) Micronutrient deficiencies in patients with typical and atypical celiac disease. *Journal of Pediatric Gastroenterology and Nutrition* 53: 265–270.
- 100.Weintraub Y, Ben-Tov A, Dotan G, et al. (2019) Vitamin A levels are comparable between children with newly diagnosed coeliac disease and non-coeliac controls. *Acta Paediatrica* 108(11): 2095–2099.
- 101. Tokgoz Y, Terlemez S and Karul A (2018) Fat soluble vitamin levels in children with newly diagnosed celiac disease, a case control study. *BMC Pediatrics* 18: 130.
- 102.Piatek-Guziewicz A, Ptak-Belowska A, Przybylska-Felus M, et al. (2017) Intestinal parameters of oxidative imbalance in celiac adults with extraintestinal manifestations. *World Journal of Gastroenterology* 23: 7849–7862.
- 103.Armagan O, Uz T, Tascioglu F, et al. (2005) Serological screening for celiac disease in premenopausal women with idiopathic osteoporosis. *Clinical Rheumatology* 24: 239–243.
- 104. Narang M, Natarajan R, Shah D, et al. (2018) Celiac disease in children with moderate-to-severe iron-deficiency anemia. *Indian Pediatrics* 15: 31–34.
- 105. Valente FX, Campos Tdo N, Moraes LF, et al. (2015) B vitamins related to homocysteine metabolism in adults celiac disease patients: A cross-sectional study. *Nutrition Journal* 14: 110.
- 106.Remes-Troche JM, Cobos-Quevedo ODJ, Rivera-Gutiérrez X, et al. (2020) Efectos de una dieta libre de gluten (DLG) durante 6 meses sobre el metabolismo en pacientes conenfermedad celíaca, sensibilidad al gluten no celíaca y controles asintomáticos. *Revista de Gastroenterología de México* 85(2): 109–117.
- 107.Emami MH, Karimi S and Kouhestani S (2012) Is routine duodenal biopsy necessary for the detection of celiac disease in patients presenting with iron deficiency anemia? *International Journal of Preventive Medicine* 4: 273–277.
- 108. Baghbanian M, Farahat A, Vahedian HA, et al. (2015) The prevalence of celiac disease in patients with irondeficiency anemia in Center and South area of Iran. *Arquivos de gastroenterologia* 52(4): 278–282.
- 109. Volkan B, Fettah A, İşlek A, et al. (2018) Bone mineral density and vitamin K status in children with celiac disease: Is there a relation? *Turkish Journal of Gastroenterology* 29: 215–220.
- 110.Haapalahti M, Kulmala P, Karttunen TJ, et al. (2005) Nutritional status in adolescents and young adults with

screen-detected celiac disease. *Journal of Pediatric Gastroenterology and Nutrition* 40(5): 566–570.

- 111.Hallert C, Tobiasson P and Walan A (1981) Serum folate determinations in tracing adult coeliacs. *Scandinavian Journal of Gastroenterology* 16: 263– 267.
- 112.Hadithi M, Mulder CJ, Stam F, et al. (2009) Effect of B vitamin supplementation on plasma homocysteine levels in celiac disease. *World Journal of Gastroenterology* 15: 955–960.
- 113.Dickey W, Ward M, Whittle CR, et al. (2008) Homocysteine and related B-vitamin status in coeliac disease: Effects of gluten exclusion and histological recovery. *Scandinavian Journal of Gastroenterology* 43: 682–688.
- 114.Szymczak J, Bohdanowicz-Pawlak A, Waszczuk E, et al. (2012) Low bone mineral density in adult patients with coeliac disease. *Endokrynologia Polska* 63(4): 270–276.
- 115. Villanueva J, Maranda L and Nwosu BU (2012) Is vitamin D deficiency a feature of pediatric celiac disease? *Journal of Pediatric Endocrinology and Metabolism* 25(5–6): 607–610.
- 116.Nwosu BU and Maranda L (2015) Vitamin D status and adiposity in pediatric malabsorption syndromes. *Digestion* 92(1): 1–7.
- 117.Setty-Shah N, Maranda L and Nwosu BU (2014) Increased risk for vitamin d deficiency in obese children with both celiac disease and type 1 diabetes. *Gastroenterology Research and Practice* 2014(1): 561351.
- 118.Uyanikoglu A, Cindioglu C, Ciftci A, et al. (2021) The value of 25 (OH) and 1,25 (OH) vitamin D serum levels in newly diagnosed or on diet adult celiac patients: A casecontrol study. *International Medicine* 3(2): 37–42.
- 119.Corazza GR, Di Sario A, Cecchetti L, et al. (1996) Influence of pattern of clinical presentation and of gluten-free diet on bone mass and metabolism in adult coeliac disease. *Bone* 18: 525–530.
- 120.Lionetti E, Galeazzi T, Dominjanni V, et al. (2021) Lower level of plasma 25-Hydroxyvitamin D in children at diagnosis of celiac disease compared with healthy subjects: A case-control study. *The Journal of Pediatrics* 228: 132–137.
- 121.Jameson S, Hellsing K and Magnusson S (1985) Copper malabsorption in coelia disease. *Science of the Total Environment* 42: 29–36.
- 122.Rawal P, Thapa BR, Prasad R, et al. (2010) Zinc supplementation to patients with celiac disease—is it required? *Journal of Tropical Pediatrics* 56: 391– 397.
- 123.Naveh Y, Lightman A and Zinder O (1983) A prospective study of serum zinc concentration in children with celiac disease. *Journal of Pediatrics* 102(5): 734–736.

Appendix

Appendix I

KEY-WORDS ("Celiac Disease"[Mesh]) AND (zinc OR ferritin OR "vitamin K" OR "vitamin B12" OR "vitamin A" OR (zinc OR ("25-hydroxyvitamine" PUBMED D") OR ("25(OH) D") "vitamin D" OR "vitamin E" OR "vitamin B6" OR iron) AND (diet* OR micronutrient* OR nutrien* OR deficien*) ("Celiac Disease") AND (zinc OR ferritin OR "vitamin K" OR GOOGLE "vitamin B12" OR "vitamin A" OR "vitamin D" (zinc OR ("25-SCHOLAR hydroxyvitamine D") OR ("25(OH) D") OR "vitamin E" OR "vitamin B6") AND (diet* OR micronutrient* OR nutrien* OR deficien*) TITLE-ABS-KEY (("Celiac Disease") AND (zinc OR ("25-Scopus hydroxyvitamine D") OR ("25(OH) D") OR ferritin OR "vitamin K" OR "vitamin B12" OR "vitamin A" OR "vitamin D" OR "vitamin E" OR "vitamin B6") AND (diet* OR micronutrient* OR nutrien* OR deficien*)) AND (LIMIT-TO (SUBJAREA, "MEDI") OR LIMIT-TO (SUBJAREA, "BIOC")) AND (LIMIT-TO (LANGUAGE, "English") OR LIMIT-TO (LANGUAGE , "French")) AND (LIMIT-TO (EXACTKEYWORD, "Celiac Disease") OR LIMIT-TO (EXACTKEYWORD , "Gluten Free Diet")) AND (LIMIT-TO (DOCTYPE , "ar")) AND (LIMIT-TO (SRCTYPE , "j")) Web of science ("Celiac Disease" OR "Coeliac Disease") AND (diet* OR micronutrient* OR nutrien* OR deficien*)

			פט ווו נוופ ווופנים-מוומו)	.515.										
Q	YEAR	COUNTRY	StudyType	AGE	AGE	۶	PZ	AGEc	AGEd	HBc	HBd	SdHBc	SdHBd	AdherenceScore
Karaman et al. ⁹⁷	2016	Turkey	Prospective	Children	6	238	12		6.2	8.7	7.3	I.6	4.	Good
Rafet Mete et al. ⁹⁸	2021	Turkey	Prospective	Adult	41.955	56	4	45.05	38.86	12.22	12.39	2.09	2.51	Good
Botero-Lopez et al. ⁹⁹	2020	Chile	Cross-sectional	Adult	21.31	36	73	17.8	24.82	13.6	12.6	<u>4.</u>	2.18	Excellent
Bayrak et al. ⁵⁰	2019	Turkey	Cross-sectional	Children	12.845	135	228	12.77	12.92	13.56	12.09	I.I5	1.71	Excellent
Weintraub et al. ¹⁰⁰	2019	Israel	Prospective	Children	11.6	99	47	15	8.2	13.1	12.4		4.1	Excellent
Tokgoz et al. ¹⁰¹	2018	Turkey	Case-control	Children	8.85	50	52	8.7	6	12.3	II.3		1.7	Excellent
Piatek-Guziewicz et al. ¹⁰²	2017	Poland	Cross-sectional	Adult	36	25	29	38	34	13.4	12.6	4. 1	В. П	Excellent
Armagan et al. ¹⁰³	2004	Turkey	Case-control	Adult	35.935	72	6	35.87	36	12.02	11.72	1.39	I.28	Good
Narang et al. ¹⁰⁴	2016	India	Cross-sectional	Children		146	9			7.8	6.4	<u>8.</u>	I.I3	Good
Xavier-Valente et al. ¹⁰⁵	2015	Brazil	Cross-sectional	Adult	36	39	20	36	36	13.4	13.6	I.3	1.2	Good
Ince et al. ⁸⁶	2007	Turkey	Cross-sectional	Adult	0	32	35			4	12.2	I.3	1.7	Good
Troch et al. ¹⁰⁶	2019	Mexico	Cross-sectional	Adult		20	20			13.7	12.5	I.62		Excellent

Articles involving Ferritin included in the meta-analysis.

			1 anal 212.										
Q	YEAR	COUNTRY	StudyType	AGE	۶	PZ	AGEc	AGEd	FERRITINEC	FERRITINEd	SdFERRIc	SdFERRId	AdherenceScore
Emami et al. ¹⁰⁷	2011	Iran	Cross-sectional	Adult	117	13	36	35.3	8.41	7.2	3.2	0.7	Excellent
Baghbanian et al. ¹⁰⁸	2015	Iran	Cross-sectional	Adult	378	24		25.76	11.13	11.13	9.06	8.71	Excellent
Karaman et al. ⁹⁷	2016	Turkey	Prospective	Children	238	12		6.2	5.2	2	3.2	0.7	Good
Rafet Mete et al. ⁹⁸	2021	Turkey	Prospective	Adult	56	4	45.05	38.86	28.34	13.23	35.87	11.23	Good
Botero-Lopez et al. ⁹⁹	2020	Chile	Cross-sectional	Adult	36	73	17.8	24.82	28.7	14.25	41.925	23.9	Excellent
Bayrak et al. ⁵⁰	2019	Turkey	Cross-sectional	Children	135	228	12.77	12.92	28.23	21.61	16.76	20.72	Excellent
Weintraub et al. ¹⁰⁰	2019	Israel	Prospective	Children	99	47	15	8.2	28.2	15.3	17.62	12.14	Excellent
Volkan et al. ¹⁰⁹	2017	Turkey	Prospective	Children	30	72		10.9	39.6	25.2	38.4	24.8	Good
lşikay et al. ⁴⁶	2018	Turkey	Cross-sectional	Children	268	226	13.62	13.2	24.11	16.48	5.78	12.57	Good
Nestares et al. ⁴⁵	2020	Spain	Cross-sectional	Children	68	43	10.3	8.5	50.3	43.I	6.5	7.7	Excellent
Haapalahti et al. ¹¹⁰	2004	Finland	Prospective	Children	29	26			27	41	30.5	19.5	Good
Kapur et al. ⁴⁹	2003	New Delhi	Prospective	Children	21	21			88.3	38.25	36.8	14.4	Good

D	YEAR	COUNTRY	StudyType	AGE	Š	PZ	AGEc	AGEd	IRON_C		SdIRONc	SdIRONd	AdherenceScore
Karaman et al. ⁹⁷	2016	Turkey	Prospective	Children	238	12		6.2	17.4	13.4	6.6	4.6	Good
Botero-Lopez et al. ⁹⁹	2020	Chile	Cross-sectional	Adult	36	73	17.8	24.82	145	150	52.5	51.875	Excellent
Bayrak et al. ⁵⁰	2019	Turkey	Cross-sectional	Children	135	228	12.77	12.92	71.39	67.07	37.7	38.02	Excellent
UnalpArida et al. ⁶⁴	2022	NSA	Cross-sectional	Adult	14000	26			86.5	90.1	62.23	40.28	Excellent
Ballestero-Fernández et al ⁴⁴	2021	Spain	Cross-sectional	Adult	74	64	38	39	107.5	100.5	11.825	10.125	Excellent
Ince et al. ⁸⁶	2007	Turkey	Cross-sectional	Adult	32	35			75	46	30	26	Good
Kapur et al. ⁴⁹	2003	New Delhi	Prospective	Children	21	21			90.89	84.69	23	24.5	Good
Karnani et al. ⁸⁵	2022	India	Case control	Children	30	60			80.63	58.24	21.18	29.63	Excellent

meta-analysis.
the ו
included ir
MCV
involving
cicles

Articles involving MCV include	ed in the n	neta-analysis.											
D	YEAR	COUNTRY	StudyType	AGE	ъ	PN	AGEc	AGEd	MCVc	MCVd	SdMCVc	SdMCVd	AdherenceScore
Armagan et al. ¹⁰³	2004	Turkey	Case-control	Adult	72	6	35.87	36	87.66	86.59	4.92	4.1	Good
Ballestero-Fernández et al. ⁴⁴	2021	Spain	Cross-sectional	Adult	74	64	38	39	90.4	91.1	1.675	I.5	Excellent
Hallert et al. ^{III}	1981	Sweden	Prospective	Adult	13	S			92	95	8	16	Fair
Baghbanian et al. ¹⁰⁸	2015	Iran	Cross-sectional	Adult	378	24		25.76	72.76	72.57	6.64	6.22	Excellent
Karaman et al. ⁹⁷	2016	Turkey	Prospective	Children	238	12		6.2	60.7	59.6	6.3	4.7	Good
Caterina et al. ⁴⁸	2005	ltaly	Case-control	Children	31	20			78	4	72	5	Good

Q	YEAR	COUNTRY	StudyType	AGE	۶	ΡZ	AGEc	AGEd	FOLATEc	FOLATEd	SdFOLATEc	SdFOLATEd	AdherenceScore
UnalpArida et al. ⁶⁴	2022	USA	Cross-sectional	Adult	15589	26		20	19.8	18.9	24.86	14.029	Excellent
lşikay et al. ⁴⁶	2018	Turkey	Cross-sectional	Children	268	226	13.62	13.2	16.5	12.55	12.44	18.07	Good
Wierdsma et al. ⁸⁴	2013	Amsterdam	Prospective	Adult	25	80	43	42.8	20.4	15.1	15	18.1	Excellent
Volkan et al. ¹⁰⁹	2017	Turkey	Prospective	Children	30	72			8.17	7.7	8	6.2	Good
Haapalahti et al. ¹¹⁰	2004	Finland	Prospective	Children	29	26			109	16	55	40.25	Good
Hallert et al. ^{III}	1981	Sweden	Prospective	Adult	13	S			4.9	2.2	I.5	0.8	Fair
Bayrak et al. ⁵⁰	2019	Turkey	Cross-sectional	Children	135	228	12.77	12.92	8.18	8.6	2.69	5.33	Excellent
Xavier Valente et al. ¹⁰⁵	2015	Brazil	Cross-sectional	Adult	39	20	36	36	29	17.5	9.4	8	Good
Hadithi et al. ¹¹²	2009	Netherlands	Cross-sectional	Adult	50	51			12.1	9.7	I.325	2.325	Good
Dickey et al. ¹¹³	2008	Northern Ireland	Case-control	Adult	200	00	54.7	55	24.1	12.9	10	14.2	Good

e meta-analysis
다
. <u>=</u>
2 included
-
min E
vita
involving vita

Q	YEAR	COUNTRY	StudyType	AGE	۶	PZ	AGEc	AGEd	VITB12c	VITB12d	SdVITBc	SdVITBd	AdherenceScore
UnalpArida et al. ⁶⁴	2022	USA	Cross-sectional	Adult	15589	26		20	615.1	610	698.1	280.4	Excellent
Armagan et al. ¹⁰³	2004	Turkey	Case-control	Adult	72	6	35.87	36	340.78	300.04	131.4	54.23	Good
Xavier Valente et al. ¹⁰⁵	2015	Brazil	Cross-sectional	Adult	39	20	36	36	257.3	271.1	90.6	89	Good
Haapalahti et al. ¹¹⁰	2004	Finland	Prospective	Children	29	26			313	325	117.25	I 50.25	Good
Dickey et al. ¹¹³	2008	Northern Ireland	Case-control	Adult	200	8	55	54.7	248.6	274.1	104.6	170.9	Good
Bayrak et al. ⁵⁰	2019	Turkey	Cross-sectional	Children	135	228	12.77	12.92	363.2	344.32	204.18	I 85.58	Excellent
Volkan et al. ¹⁰⁹	2017	Turkey	Prospective	Children	30	72			393	384	228	172	Good
Hadithi et al. ¹¹²	2009	Netherlands	Cross-sectional	Adult	50	51			234.5	230.5	21.875	30.625	Good
Wierdsma et al. ⁸⁴	2013	Amsterdam	Prospective	Adult	25	80	42.8	43	272.6	231.2	117.4	104.3	Excellent
lşikay et al. ⁴⁶	2018	Turkey	Cross-sectional	Children	268	226	13.62	13.2	327.55	350.72	124.32	137.04	Good

Weintraub et al. 1002019IsraelProspectiveChildrSzymczak et al. 142012PolandCross-sectionalAdultVolkan et al. 1092017TurkeyProspectiveChildrUnalp-Arida et al. 1152012USACross-sectionalAdultVillanueva et al. 1152012USACross-sectionalAdultVillanueva et al. 1152012USACross-sectionalAdultNwosu et al. 1152012USACross-sectionalAdultVankoglu et al. 1152014USACross-sectionalAdultVankoglu et al. 1172014USACross-sectionalAdultBallestero-Fernández et al. 42021SpainCross-sectionalAdultPiatek-Guziewicz A et al. 1022017PolandCross-sectionalAdultRarnani et al. 852021TurkeyCross-sectionalAdultRarnani et al. 1012018TurkeyCross-sectionalAdultKarnani et al. 2022021SpainCross-sectionalAdultI okgoz et al. 1012018TurkeyCross-sectionalAdultI okgoz et al. 1012018TurkeyCross-sectionalAdultLionetti et al. 202020ItalyCross-sectionalAdultKarnani et al. 202021SpainCross-sectionalAdultCorazza et al. 1012018TurkeyCross-sectionalCristingLionetti et al. 2012020ItalyCross-sectionalCristin	TRY StudyType AGI	Ž	PZ	AGEc	AGEd	VITDc	VITDd	SdVITDc	POTIVPS	AdherenceScore
Weintraub et al.2019IsraelProspectiveChildrSzymczak et al.2012PolandCross-sectionalAdultVolkan et al.2012PolandCross-sectionalAdultVolkan et al.2017TurkeyProspectiveChildrUnalp-Arida et al.2012USACross-sectionalAdultVillanueva et al.2012USACross-sectionalAdultVillanueva et al.2012USACross-sectionalAdultVillanueva et al.2015USACross-sectionalAdultVyanikoglu et al.2014USAProspectiveChildrUyanikoglu et al.2014USACross-sectionalAdultBallestero-Fernández et al.2021TurkeyCase-controlAdultPiatek-Guziewicz A et al.1995MilanCross-sectionalAdultCorazza et al.1995MilanCross-sectionalAdultKarnani et al.2018TurkeyCase-controlChildrLionetti et al.2018TurkeyCase-controlChildr										
Szymczak et al. ¹¹⁴ 2012PolandCross-sectionalAdultVolkan et al. ¹⁰⁹ 2017TurkeyProspectiveChildrUnalp-Arida et al. ¹⁰⁹ 2017TurkeyProspectiveChildrUnalp-Arida et al. ¹¹⁵ 2012USACross-sectionalAdultVillanueva et al. ¹¹⁵ 2012USARetrospectiveChildrNwosu et al. ¹¹⁶ 2015USACross-sectionalAdultNuosu et al. ¹¹⁶ 2014USAProspectiveChildrNuosu et al. ¹¹⁷ 2014USAProspectiveChildrVanikoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴¹ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultRarnani et al. ⁸⁵ 2021SpainCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultLionetti et al. ¹⁰⁰ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCross-sectionalChildr	Prospective Chil	dren 66	47	15	8.2	27	26	10.37	8.14	Excellent
Volkan et al.2017TurkeyProspectiveChildrUnalp-Arida et al.2022USACross-sectionalAdultVillanueva et al.2012USACross-sectionalAdultVillanueva et al.2012USACross-sectionalAdultNwosu et al.2013USACross-sectionalAdultNwosu et al.2014USACross-sectionalChildrNwosu et al.2014USACross-sectionalChildrUyanikoglu et al.2021TurkeyCase-controlAdultBallestero-Fernández et al.2021SpainCross-sectionalAdultPiatek-Guziewicz A et al.2021PolandCross-sectionalAdultRarnani et al.2021PolandCross-sectionalAdultRarnani et al.2021PolandCross-sectionalAdultRarnani et al.2021PolandCross-sectionalAdultCorazza et al.1995MilanCross-sectionalAdultKarnani et al.2018TurkeyCase-controlChildrTokgoz et al.2018TurkeyCase-controlChildrLionetti et al.2020ItalyCross-sectionalChildr	Cross-sectional Adu	lt 36	35		41.5	39.5	29.9	61	18.3	Good
Unalp-Arida et al. ⁶⁴ 2022USACross-sectionalAdultVillanueva et al. ¹¹⁵ 2012USARetrospectiveChildrNwosu et al. ¹¹⁶ 2015USARetrospectiveChildrSetty-Shah et al. ¹¹⁷ 2014USAProspectiveChildrUyanıkoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴¹⁹ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultRarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultLionetti et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹⁰² 2017PolandCross-sectionalAdultKarnani et al. ¹⁰¹ 2018TurkeyCase-controlChildr	Prospective Chil	dren 30	72		10.9	I 5.8	17.2	10.575	11.35	Good
Villanueva et al. ¹¹⁵ 2012USARetrospectiveChildrNwosu et al. ¹¹⁶ 2015USACross-sectionalChildrSetty-Shah et al. ¹¹⁷ 2014USACross-sectionalChildrUyankoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴⁴ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultRarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCase-controlChildrLionetti et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹⁰² 2018TurkeyCase-controlChildr	Cross-sectional Adu	lt 14000	26		20	69.2	7.9.7	99.68	26.5	Excellent
Nwosu et al. ¹¹⁶ 2015USACross-sectionalChildrSetty-Shah et al. ¹¹⁷ 2014USAProspectiveChildrUyanıkoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴⁴ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCase-controlChildrTokgoz et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Retrospective Chil	dren 50	24		9.42	26.2	27.04	10.45	9.91	Good
Setty-Shah et al. ¹¹⁷ 2014USAProspectiveChildrUyanikoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴¹ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCase-controlChildrTokgoz et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Cross-sectional Chil	dren 49	25		8.5	65.4	70.6	26. I	25.7	Excellent
Uyanikoglu et al. ¹¹⁸ 2021TurkeyCase-controlAdultBallestero-Fernández et al. ⁴⁴ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultTokgoz et al. ¹⁰¹ 2018TurkeyCase controlChildrLionetti et al. ¹²⁰ 2020talyCase-controlChildr	Prospective Chil	dren 49	8	7.95	8.92	65.3	74.7	26	27.2	Excellent
Ballestero-Fernández et al. ⁴⁴ 2021SpainCross-sectionalAdultPiatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCross-sectionalAdultTokgoz et al. ¹⁰¹ 2018TurkeyCase controlChildrUonetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Case-control Adu	lt 40	40	40	40	118.43	134.33	48	44.35	Good
Piatek-Guziewicz A et al. ¹⁰² 2017PolandCross-sectionalAdultCorazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCase controlChildrTokgoz et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Cross-sectional Adu	lt 74	64	38	39	33.7	34.7	11.15	8.85	Excellent
Corazza et al. ¹¹⁹ 1995MilanCross-sectionalAdultKarnani et al. ⁸⁵ 2022IndiaCase controlChildrTokgoz et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Cross-sectional Adu	lt 25	29	38	34	29.7	19.4	5.1	6	Excellent
Karnani et al. ⁸⁵ 2022IndiaCase controlChildrTokgoz et al. ¹⁰¹ 2018TurkeyCase-controlChildrLionetti et al. ¹²⁰ 2020ItalyCase-controlChildr	Cross-sectional Adu	lt I5	23		37.5	27	15.1	4.75	5.87	Good
Tokgoz et al. ¹⁰¹ 2018 Turkey Case-control Childr Lionetti et al. ¹²⁰ 2020 Italy Case-control Childr	Case control Chil	dren 30	60			33.3	20.29	10.94	8.97	Excellent
Lionetti et al. ¹²⁰ 2020 Italy Case-control Childr	Case-control Chil	dren 50	52	8.7	6	27.6	19.8	10.4	7.9	Excellent
	Case-control Chil	dren I31	131	8.2	<u>8.</u>	31.6	25.3	13.7	8	Excellent
Armagan et al. ¹⁰³ 2004 Turkey Case-control Adult	Case-control Adu	lt 72	6	35.87	36	17.07	12.11	5.22	1.97	Good

neta-analysis.	
in the m	
included	
Copper i	
involving	
Articles	

•	-												
Q	YEAR	COUNTRY	StudyType	AGE	S	PZ	AGEc	AGEd	Copperc	Copperd	SdCopperc	SdCopperd	AdherenceScore
UnalpArida et al. ⁶⁴	2022	NSA	Cross-sectional	Adult	3274	26		20	118.4	116.5	62.94	7.07	Excellent
Jameso et al. ¹²¹	1985	Netherlands	Case-control	Adult	0	œ			20.7	61	7.4	4.6	Fair
ldris et al. ⁵⁴	2019	Sudan	Case-control	Adult	40	40			0.7	0.612	0.279	0.279	Excellent
Solomons et al. ⁷¹	1976	NSA	Cross-sectional	Adult	0	20			74.3	51.1	9.7	13	Fair
Karnani et al. ⁸⁵	2022	India	Case control	Children	30	60			90.95	90.95	17.62	17.62	Excellent
lnce et al. ⁸⁶	2007	Turkey	Cross-sectional	Adult	32	35			105	105	16	16	Good

Articles involving Zinc i	included in	the meta-analysis.									
Q	YEAR	COUNTRY	StudyType	AGE	Nc	ΡN	ZINCc	ZINCA	SdZINCc	S dZINCd	AdherenceScore
BoteroLopez et al. ⁹⁹	2020	Chile	Cross-sectional	Adulte	36	73	06	82.5	16.25	20	Excellent
UnalpArida et al ⁶⁴	2022	NSA	Cross-sectional	Adulte	14000	26	82.2	75.I	34.33	10.97	Excellent
Rawal et al. ¹²²	2010	India	Prospective	Children	48	48	74.9	71.9	29.2	19.3	Good
Ince et al. ⁸⁶	2007	Turkey	Cross-sectional	Adulte	35	32	101	70	20	4	Good
Naveh et al. ¹²³	1983	Israel	Prospective	Children	31	34	001	62	15	=	Fair
Fathi et al. ⁶⁸	2013	Tehran	Case-control	Adulte	30	30	92.83	75.97	81	12	Good
Karnani et al. ⁸⁵	2022	India	Case-control	Children	30	60	102.13	16.52	80.63	21.18	Good
ldris et al. ⁵⁴	2019	Sudan	Case-control	Adulte	40	40	_	0.285	0.245	0.1776	Excellent

Appendix 3. Published articles included in this meta-analysis, categorized by region.