Skip to main content
. 2024 Oct 3;23:3549–3558. doi: 10.1016/j.csbj.2024.09.026

Table 1.

Overview of computational tools for predicting 3D chromatin structure from scHi-C contact data. For each method, we provide details on the primary reconstruction technique, the implementation programming language, the single-cell datasets utilized in the original study, and links to the corresponding source code.

Method name Technique Language Single cell dataset Source code link
Nagano et al. 2013 [17] Simulated Annealing Nagano 2013
MBO [37] Gradient Descent Matlab Nagano 2013 http://folk.uio.no/jonaspau/mbo/
ISDHi-C [38] Hamiltonian Monte Carlo Python Nagano 2013 https://github.com/michaelhabeck/isdhic
RPR [39] Recurrence Plot-based Reconstruction Matlab Nagano 2013
NucDynamics [28] Simulated Annealing Python Stevens 2017 https://github.com/tjs23/nuc_dynamics
SIMBA3D [40] Gradient Descent Python Stevens 2017 https://github.com/nerettilab/SIMBA3D
SCL [41] Metropolis-Hastings and Simulated Annealing C++ Nagano 2013, Stevens 2017, Tan 2018 http://dna.cs.miami.edu/SCL/
Wetterman et al. 2020 [13] Molecular Dynamics Python Stevens 2017
Si-C [42] Gradient Descent C++ Stevens 2017 https://github.com/TheMengLab/Si-C/
LJ3D [43] Metropolis-Hastings and Simulated Annealing C++ Bonev 2017 http://dna.cs.miami.edu/LJ3D
DPDChrom [44] Dissipative Particle Dynamics Python Flyamer 2017, Gassler 2017 https://github.com/polly-code/DPDchrom
Rothörl et al. 2023 [14] Molecular Dynamics Python Tan 2018, Tan 2019 https://gitlab.rlp.net/3d-diploid-chromatin/simulation-code/