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Plant viruses, discovered over a century ago when
the science of virology was born (for review, see
Creager, 2002), are obligate parasites on their hosts.
Through their life cycle, from virus accumulation to
intracellular, local, and systemic movement, viruses uti-
lize plant proteins, normally involved in host-specific
activities, for their own purposes. Although the first
identification of a host protein interacting with plant
viral RNA took place more than 25 years ago (for
review, see Buck, 1999; Waigmann et al., 2004), the true
complexity of this interaction between plant viruses
and their hosts to allow virus accumulation and spread
is just now becoming understood.

In addition, the ability of the host to defend itself
against virus replication and spread is now known to be
much more complex than was thought not long ago.
During the early 1990s, the first findings were pub-
lished suggesting that a plant host defense system tar-
geting viral RNA with extreme sequence specificity
existed (e.g. de Haan et al., 1992; Lindbo and Dougherty,
1992). Initially, these observations were not fully un-
derstood to represent an RNA-mediated host defense
system now referred to as the RNA interference
(RNAi), but with time were well differentiated from
the better studied host and transgene defense systems
mediated through proteins (e.g. the hypersensitive
reaction of Nicotiana tabacum cv Xanthi NN against
tobacco mosaic virus [TMV] and coat protein-mediated
resistance; Beachy, 1999; Marathe et al., 2002). In the last
few years, plant molecular virologists and biologists
have moved with increasing speed to document the
incredibly complex interactions between virus and host
factors necessary to allow or defeat virus infections in
the presence of RNAi (e.g. Baulcombe, 2004). Thus,
plant viruses, besides their traditional role as causative
agents of numerous plant diseases, represent molecular
tools to examine and dissect diverse basic cellular
processes in plants, ranging from intracellular trans-
port and nucleocytoplasmic shuttling (Lazarowitz and

Beachy, 1999; Oparka, 2004) to intercellular transport
(Waigmann et al., 2004) to gene silencing (Moissiard
and Voinnet, 2004).

This focus issue reports new insights into how
viruses may utilize host factors to accumulate and
move intracellularly to position for intercellular move-
ment (Chen et al., 2005; Ju et al., 2005; Liu et al., 2005).
Also, information further illuminating the ‘‘give and
take’’ between virus and host factors battling for
control during RNAi is presented (Chellappan et al.,
2005; Liu et al., 2005; Schwach et al., 2005). Update
articles on virus-host interactions during virus repli-
cation and movement in this issue review recent
information in these areas to provide clues for pro-
ductive future research (Boevink and Oparka, 2005;
Thivierge et al., 2005). In this State of the Field editorial,
we introduce the research and Update articles in this
issue and review recent literature on virus-host inter-
actions not addressed in the Updates.

VIRUS ACCUMULATION

For both DNA and RNA plant viruses, the accumu-
lation of progeny virus involves translation and rep-
lication of viral sequences (Buck, 1999; Ahlquist et al.,
2003; Noueiry and Ahlquist, 2003; Hanley-Bowdoin
et al., 2004; Ishikawa and Okada, 2004; Räjamaki et al.,
2004, and refs. therein). These plant viruses rely on the
host to provide factors to aid their accumulation. The
Update article by Thivierge et al. (2005) presents
a summary of recent insights into the mechanisms by
which positive-sense single-stranded RNA viruses
take advantage of the host cell mRNA processing
and translation machinery.

Research on virus-host interactions during DNA
virus accumulation has also moved forward. For ex-
ample, an NAC domain protein, SINAC1, from tomato
(Solanum lycopersicum) that interacts with a geminivirus
replication enhancer (REn) protein was identified and
suggested to participate in viral replication (Selth et al.,
2005). NAC family members, which function in plant
development and defense responses (e.g. Xie et al.,
2000; Hegedus et al., 2003), are known to interact with
other geminivirus proteins, such as RepA, but in those
instances they inhibited rather than promoted viral
replication (Xie et al., 1999). Furthermore, a NAC pro-
tein interaction with an RNA virus coat protein is
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necessary during a resistance response in Arabidopsis
(Arabidopsis thaliana; Ren et al., 2000). That host proteins
from a single family display different functions during
DNA and RNA virus infection illustrates the complex-
ity of the virus-host interaction process.

Large-scale screening for host factors that affect
RNA virus accumulation has been undertaken using
yeast as an alternative host distinguished by a wealth
of well-characterized mutants (e.g. Kushner et al.,
2003; Panavas et al., 2005). These experiments showed
that host genes involved in viral accumulation may
differ between viruses. For example, while brome
mosaic virus and tomato bushy stunt virus each are
affected in their accumulation by approximately 100
host genes, only 14 of these genes overlap between
viruses. The overlapping genes encoded proteins be-
longing mainly to three functional groups: protein
biosynthesis, protein metabolism, and transcription/
DNA remodeling (Panavas et al., 2005). Interestingly,
no overlap existed between tomato bushy stunt virus
and brome mosaic virus for genes involved in protein
targeting, membrane association, vesicle transport, or
lipid metabolism (Panavas et al., 2005), suggesting that
there are important differences between these viruses
for host membrane targeting and intracellular trans-
port. Although analysis in yeast allows a high-
throughput analysis of yeast host factors that affect
plant virus accumulation, it is important to supplement
these data with information obtained in plant cells, for
example, using a recently developed technology to
study virus replication in a cell-free system of mem-
brane-containing extract from uninfected evacuolated
plant protoplasts (Komoda et al., 2004). The potential to
utilize protoplasts from mutant plants silenced for
expression of specific plant genes identified through
the yeast-based selection is very exciting.

INTRACELLULAR AND
INTERCELLULAR MOVEMENT

To spread between cells, viruses must first move
from their replication sites to plasmodesmata at the cell
periphery and then traverse these intercellular chan-
nels to enter the neighboring cell. Cell-to-cell transport
of most plant viruses is mediated by specific virally
encoded factors termed movement proteins (MPs), the
function of which may be augmented by other viral
proteins (for review, see Morozov and Solovyev, 2003;
Räjamaki et al., 2004; Waigmann et al., 2004). The
majority of the cell-to-cell transport machinery, how-
ever, is presumed to be provided by the host cell. One
such host transport apparatus is the cytoskeleton.
Although plant cytoskeletal elements were implicated
in viral cell-to-cell transport a decade ago (Heinlein
et al., 1995; McLean et al., 1995), the relative roles of
microtubules and microfilaments in the transport pro-
cess are just emerging. Recent data suggest that, for
TMV, microfilaments participate in the cell-to-cell
movement of the virus, whereas microtubules and
microtubule-associated proteins may be involved in

degradation of the viral MPs (Gillespie et al., 2002;
Kragler et al., 2003). In this issue, Liu et al. (2005)
demonstrate the role of microfilaments in cell-to-cell
movement of TMV. Disruption of microfilaments by
pharmacological agents or by virus-induced gene si-
lencing compromised TMV spread from cell to cell, but
it did not significantly affect viral accumulation within
the infected cells (Liu et al., 2005). Furthermore, this
study demonstrated the potential involvement of an-
other TMV factor, the 126-kD protein, in viral transport
along microfilaments; the 126-kD protein was shown to
associate with viral replication complexes, modulate
their size, and potentially mediate their interaction
with and movement along the microfilament network
(Liu et al., 2005).

Increasing evidence suggests that the cytoskeletal
network does not function alone in viral transport to
and through plasmodesmata. Instead, it may act to-
gether with the endomembrane transport system of the
host cell. Specifically, many viral MPs may be delivered
to plasmodesmata via the endoplasmic reticulum (ER),
while actin/myosin filaments may regulate the flow of
proteins in the ER membrane (Boevink and Oparka,
2005). Two articles in this issue address the role of ER in
viral cell-to-cell transport and plasmodesmal targeting.
Ju et al. (2005) show that the potato potexvirus X (PVX)
triple gene block (TGB) p2, one of the proteins required
for movement of this group 2 member of the TGB-
containing viruses, associates with ER-derived vesi-
cles, which in turn colocalize with actin filaments.
Intriguingly, no association of the TGBp2 with Golgi
vesicles was detected (Ju et al., 2005), consistent with
findings in a recent report studying the movement of
TGBp2-containing structures in tissue infected with
potato mop-top virus, a group 1 member of the TGB-
containing viruses (Haupt et al., 2005). Thus, these
viruses likely use an ER-dependent pathway for
plasmodesmal targeting, which is different from the
Golgi-dependent targeting to plasmodesmata recently
demonstrated for some cellular proteins (Sagi et al.,
2005).

The association of the potexviral TGBp2 MP with
microfilaments and ER resembles similar associations
of the tobamoviral MP and the 126-kD protein (McLean
et al., 1995; Heinlein et al., 1998; Hagiwara et al., 2003;
Liu et al., 2005). This resemblance indicates physical
and functional similarities between MPs and move-
ment-associated proteins of potexviruses and tobamo-
viruses, suggesting that both viral groups utilize
a similar method of intracellular movement, at least
through a portion of this passage (Nelson, 2005).

For TMV, the role of the ER translocation and plas-
modesmal targeting was explored by Chen et al. (2005)
using calreticulin, a cellular protein that localizes to
plasmodesmata (Baluska et al., 1999; Michalak et al.,
1999; Chen et al., 2005). This study showed that the
N-terminal signal peptide was critical for the ability of
calreticulin to accumulate within plasmodesmata (Chen
et al., 2005). Based on these observations, it is tempting to
speculate that plasmodesmal targeting involves two dis-
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tinct signals, a signal to enter the ER network and a puta-
tive plasmodesmata localization signal. Consistent with
this idea, several types of viral MPs that ‘‘gate’’ plasmo-
desmata (e.g. Waigmann et al., 1994; Tamai and Meshi,
2001) have been shown also to associate with the ER (e.g.
Heinlein et al., 1998; Haupt et al., 2005; Ju et al., 2005).

Chen et al. (2005) also showed that calreticulin
interacts with TMV MP and that overexpression of
calreticulin in transgenic plants redirects TMV from
plasmodesmata to microtubules and compromises cell-
to-cell transport of the virus. A potential, albeit indirect,
functional link between viral MPs and calreticulin also
may be inferred from the observations that one of the
two MPs of the turnip crinkle virus (TCV) interacts
with an Arabidopsis protein containing two RGD cell-
attachment sequences (Lin and Heaton, 2001) that are
recognized by integrins (Campbell et al., 2000), which
in turn interact with calreticulin (Dedhar, 1994).

Possible roles of the calreticulin-MP interaction in
regulation of plasmodesmal permeability are dis-
cussed in the Update article by Boevink and Oparka
(2005) in this issue. These authors present a review of
the latest trends and discoveries regarding the role of
the ER/actin network in intracellular transport, rec-
ognition of adhesion sites at the cell periphery, mod-
ification of plasmodesmata by alteration of the cell
wall structure, Hsp70 chaperones as potential trans-
location factors, and regulation of viral cell-to-cell
movement (Boevink and Oparka, 2005).

Recently, a potential link between virus accumula-
tion and cell-to-cell movement was identified when the
eukaryotic translation factors eIF4E and eIF(iso)4E,
which are required for accumulation of potyviruses
(Duprat et al., 2002; Lellis et al., 2002; Ruffel et al., 2002;
Nicaise et al., 2003), were also shown to aid in virus cell-
to-cell movement (Gao et al., 2004). These observations
supported earlier findings where plant mutants with
altered eIF4E activity exhibit limited virus spread
(Arroyo et al., 1996). It has been speculated that poty-
virus intracellular movement may occur via an inter-
action of eIF4E with eIF4G, which then binds
microtubules (Lellis et al., 2002). Regardless of the
mechanism of eIF4E-mediated virus movement, it is
important to realize that host proteins may function in
several steps of the virus infection process, e.g. in the
case of eIF4E, both in virus translation and/or replica-
tion and in viral cell-to-cell movement.

Finally, in recent years, viral MPs have been shown
to interact with numerous other cellular proteins,
such as pectin methylesterases (Dorokhov et al.,
1999; Chen et al., 2000; Chen and Citovsky, 2003),
protein kinases (Yoshioka et al., 2004), homeodomain
proteins (Desvoyes et al., 2002), DnaJ-like proteins
(Soellick et al., 2000; von Bargen et al., 2001), rab
acceptor-related proteins (Huang et al., 2001), b-1,3-
glucanase-interacting proteins (Fridborg et al., 2003),
and transcriptional coactivators (Matsushita et al.,
2001, 2002). To date, only protein kinases have been
shown to play a role in viral intercellular move-
ment (Citovsky et al., 1993; Kawakami et al., 1999;

Waigmann et al., 2000; Trutnyeva et al., 2005), while
the functions of other MP-interacting proteins in this
process remain obscure, awaiting future studies.

VIRUSES VERSUS RNAi HOST DEFENSE

Virus-host interactions during RNAi in plants are
complex and understood only at a rudimentary level.
In general, plants have multiple RNA silencing path-
ways with diverse biological roles (Baulcombe, 2004).
These include the regulation of gene expression and
importantly, for this short review, the control of virus
accumulation. The analysis of the RNAi pathway
controlling virus accumulation is complicated because
some of the host genes involved in this process also
function in regulating host gene expression. In addi-
tion, viruses themselves modify the final outcome by
their expression of proteins that defeat the system, i.e.
suppressors of RNA silencing. For a more complete
understanding of this rapidly evolving area, there are
many excellent recent reviews (Baulcombe, 2004; Ding
et al., 2004a; Moissiard and Voinnet, 2004).

RNA silencing involves the recognition of a target
RNA and its subsequent destruction. This occurs via
a multistep enzymatic pathway including, in plants,
an RNA-dependent RNA polymerase (RdRP; now
referred to as RDR), an RNase-III-type dicer-like
endonuclease (DCL), putative members of the RNA-
induced silencing complex such as Argonaute, which
likely binds RNA, and other proteins that may support
RNA-induced silencing complex activity, such as
DEAD box helicases (SDE3; for review, see Baulcombe,
2004; Meister and Tuschl, 2004). The majority of these
proteins are members of gene families, and it is this
multiplicity of family members that allows the plant to
respond to widely varying needs (e.g. plant develop-
ment and defense against virus invasion) and compli-
cates our ability to understand each system.

One way to simplify this issue is to identify natural
or created plant knockout mutants for each gene
involved in RNA silencing and study their loss-of-
function phenotype during virus challenge. Using this
approach, Arabidopsis DCL2 was found to be re-
quired for protection against TCV (Xie et al., 2004).
Arabidopsis SDE3 was required for protection against
cucumber mosaic virus (CMV) but not tobacco rattle
virus (TRV; Dalmay et al., 2001). For the RDRs, the
tobacco RDR1 was required for protection against
TMV and PVX, while its Arabidopsis homolog was
required for protection against TMV-cg, a tobamovirus
very closely related to turnip vein clearing virus
(TVCV; Lartey et al., 1993), and TRV (Xie et al., 2001;
Yu et al., 2003). Interestingly, Nicotiana benthamiana is
a natural mutant for RDR1, and transgenic expression
of an RDR1 ortholog from Medicago truncatula en-
hanced its susceptibility to TMV, TVCV, and sunn
hemp mosaic virus (a tobamovirus, but only distantly
related to TMV and TVCV), but not CMVor PVX (Yang
et al., 2004). Similarly, RDR6 was required for pro-
tection against CMV, but not turnip mosaic virus,
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TVCV, TCV, or TRV in Arabidopsis (Dalmay et al.,
2000; Mourrain et al., 2000). Thus, specific RDRs likely
recognize different viruses; RDR1 is required for pro-
tection against tobamoviruses and TRV, while RDR6 is
required for protection against CMV.

In this issue, Schwach et al. (2005) report that RDR6
in N. benthamiana is required to inhibit infections by
PVX, potato virus Y, and CMV, in the presence of its Y
satellite RNA, but has no effect on infections by TMV,
TRV, TCV, and CMV, in the absence of the Y satellite
RNA. During infection with PVX, RDR6 prevented the
systemic (including meristems), but not local, infection
of plants (Schwach et al., 2005). Grafting experiments
showed that RDR6 is required for cells to respond to
a systemically moving silencing signal. The results of
this study suggested that RDR6 produces double-
stranded RNA precursors from the silencing signal
that are used to generate short-interfering RNAs
(siRNAs), which in turn allow an immediate silencing
response against the target virus on its arrival
(Schwach et al., 2005). This information advances our
understanding of the mechanism of the host RNAi-
mediated resistance pathway against virus infection.
For example, as Schwach et al. (2005) suggest, exclu-
sion of virus from the meristem is mediated by RNAi,
and RDR6 is involved in this process. These results
also raise issues to consider for future work in this
area. For example, what are the virus and satellite
RNA targets telling us about the substrate structural
requirements for each RDR, or is it that factors other
than substrate suitability control the ability of partic-
ular RDRs to control accumulation by specific viruses?
Also, why does the Arabidopsis RDR6, but not N.
benthamiana RDR6, protect against CMV?

It was also interesting that Schwach et al. (2005)
showed that RDR6 did not control cell-to-cell move-
ment of PVX, indicating that the silencing pathway in
which this enzyme functions does not target virus
intracellular or intercellular movement. In this issue,
Liu et al. (2005) reported that mutant TMVs expressing
126-kD protein silencing suppressors of varying
strengths were also not altered in cell-to-cell move-
ment (for TMV suppressor characterization, see Ku-
bota et al., 2003; Ding et al., 2004b). Earlier, such an
unlinking of RNA silencing suppressor activity from
cell-to-cell movement was demonstrated for the P15
suppressor from peanut clump peculovirus (Dunoyer
et al., 2002). It will be interesting to determine whether
or not RNA silencing ever directly targets the intra-
cellular or cell-to-cell movement forms of the viral
RNA. It may be that these forms are always protected
from the host silencing machinery.

Another article in this issue reports the effect of
temperature on the production of siRNAs in plants
challenged with various geminiviruses, demonstrat-
ing that RNA silencing increased as the temperature
was raised from 25�C to 30�C (Chellappan et al., 2005).
This finding extends to DNA viruses what was found
for an RNA virus, Cymbidium ringspot virus, in N.
benthamiana (Szittya et al., 2003). Importantly, the in-

crease in siRNA steady-state levels was most striking
(3- to 6-fold) for geminiviruses not associated with
a recovery phenomenon (i.e. producing fewer symp-
toms over time) compared with those that were
associated with a recovery phenomenon. This dra-
matic increase in siRNAs also was correlated with the
presence of one of two viral suppressors in these
geminiviruses (Vanitharani et al., 2004; Chellappan
et al., 2005). The critical importance of controlling tem-
perature when studying RNAi or applying it in agri-
culture is also highlighted in this work (Chellappan
et al., 2005).

Last, it is interesting that connections between the
induction of stress in cells, which could be considered
a host defense response, and virus movement may
exist. For example, exposure of plants to abiotic stress,
e.g. low levels of heavy metal cadmium, blocks viral
systemic movement (Citovsky et al., 1998; Ghoshroy
et al., 1998; Ueki and Citovsky, 2002). At the other
extreme, stress may aid movement because host heat
shock protein (HSP) 70 (Aoki et al., 2002) and virus-
encoded HSP70-related proteins (Medina et al., 1999;
Alzhanova et al., 2001; Prokhnevsky et al., 2002) likely
help viral and/or host macromolecular transport
through plasmodesmata. Interestingly, the induction
of host HSP70s during infection by plant RNA viruses
is driven by a general mechanism that senses the level
of misfolded proteins in the cell, regardless of protein
origin, viral or host (Aparicio et al., 2005). The study by
Ju et al. (2005) in this issue touched on the role of stress
in viral movement by showing that turnover of TGBp2
was greater during virus infection than when it was
expressed alone in plant cells. They also determined
that, in plant cells, TGBp2:green fluorescent protein
had a longer half-life than free green fluorescent
protein. Based on these observations, Ju et al. specu-
lated that cell stress, represented by increased protein
turnover, could aid movement of PVX between cells by
translocating TGBp2 or viral movement complex out
of the ER into the cytosol and making it available not
only for degradation but also for transport through
plasmodesmata (Ju et al., 2005). It will be interesting to
see if viruses indeed have pirated the host stress
response for their own purposes.
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