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A recent experiment [Vandenberghe, N., Zhang, J. & Childress, S.
(2004) J. Fluid Mech. 506, 147–155] has shown that an axle-
mounted blade can spontaneously rotate when oscillated (or
‘‘flapped’’) above a critical frequency in a fluid. To understand the
nature of flapping locomotion we study numerically the dynamics
of a simple body, flapped up and down within a viscous fluid and
free to move horizontally. We show here that, at sufficiently large
‘‘frequency Reynolds number,’’ unidirectional locomotion emerges
as an attracting state for an initially nonlocomoting body. Loco-
motion is generated in two stages: first, the fluid field loses
symmetry by an instability similar to the classical von Kármán
instability; and second, precipitous interactions with previously
shed vortical structures ‘‘push’’ the body into locomotion. Body
mass and slenderness play central and unexpected roles in each
stage. Conceptually, this work demonstrates how locomotion can
be transduced from the simple oscillations of a body through an
interaction with its fluid environment.

bifurcation � flight � symmetry-breaking � instability �
fluid-structure interaction

A common strategy for locomotion through a fluid uses
appendages, such as wings or fins, f lapping perpendicularly

to the direction of travel (1). This strategy is in marked difference
to strategies, using propellers or screws, ciliary waves, or rowing
with limbs or oars, which explicitly move fluid in the direction
opposite to travel. Flapping locomotion is also never observed
for microorganisms moving at low Reynolds number. We con-
sider a rigid body of simple shape, here an ellipse of major
(minor) axis length L (W), with uniform mass density �b. The
body translates with velocity ub � (ub, vb) (without rotation) in
the infinite x-y plane through a 2D viscous fluid of density � and
viscosity �. We specify its vertical motion as yb(t) � �Acos(2�ft)
(in technical parlance this is a heaving body). Hence, L is a
characteristic length and Af is a characteristic velocity, which
defines the frequency Reynolds number Refr � �(Af )L��. The
surrounding fluid is governed by the 2D incompressible Navier–
Stokes equations:

Refr

Du
Dt

� ��p � �u and ��u � 0, [1]

with u � (u, v) the fluid velocity, p the pressure, and D�Dt the
material time derivative. Eq. 1 is in nondimensional form with
Refr its sole control parameter.

An important element of this study is that the horizontal
motion of the body is not specified, as in many other studies
(2–5), but rather is determined by the fluid force acting at its
boundary through Newton’s second law:

M Refr

dub

dt
� x̂�Ff luid with Ff luid � �

body

��pI � 2E�n ds ,

[2]

where M � (�b��) � (A0�L2), with A0 the body area, and n the
outward normal. The fluid stress tensor, �pI � 2E with E the
symmetric rate-of-strain tensor, encodes pressure (first term)
and viscous stresses (second term). Eqs. 1 and 2 together with
u�body � ub, close this coupled body-fluid system, for which the
sum of horizontal body and fluid momentum is an invariant.
Newton’s law has been coupled to the Navier–Stokes equations
previously to study fundamental f low-body interactions such as
bodies rising and falling in a fluid (6, 7) and cylinders mounted
in a steady flow (8). Besides Refr, important control parameters
are the body aspect ratio L�W, the dimensionless stroke ampli-
tude A�L [set to 1�2 to simplify the problem; this value has been
observed in experiments to lead to efficient flapping flight (5)],
and the density ratio �b��. This last parameter is interesting as,
if large, it can be considered as partially accounting for the
inertia of an attached, nonoscillating body.

We have simulated this coupled body-fluid system by using a
numerical method based on the ‘‘vorticity-stream-function’’ for-
mulation of Eq. 1 and a mixed Fourier�finite-difference dis-
cretization. The vorticity, � � vx � uy, measures the local
rate-of-rotation of the fluid. Vorticity is transported and dif-
fused according to Refr D��Dt � ��, (the curl of Eq. 1). Our
method is fourth-order accurate in space and second-order in
time, with the vorticity diffusion term treated implicitly. Related
formulations have been developed by E and Liu (9) and Wang
(2). The numerical grid conforms to and moves with the elliptical
body and has an outer boundary that is typically many body
diameters away from the body itself. Boundary conditions on the
outer boundary simulate the fluid dynamics in the far field, by
setting the values of the stream function to correspond to purely
translational velocity (minus the body velocity in the physical
frame) and the values of vorticity to zero (see ref. 10 for further
details). In these simulations, the vertical motion of the body is
specified, and the horizontal motion is studied after the impo-
sition of perturbations in horizontal velocity (ub 	 10�12 to
10�2). The initial f luid velocity is zero everywhere, and the sum
of horizontal body and fluid momentum is conserved to within
0.03% of the eventual steady-state magnitudes of each of the
summands. Hence, any horizontal motion of the body signifi-
cantly above the level of the perturbation is achieved only
through a momentum exchange with the fluid.

First, we find that if the body flaps at sufficiently small Refr the
state of no horizontal body motion is stable; horizontal motions
imposed transiently on the flapping body rapidly dissipate and
the fluid resumes a left-right symmetric dynamics (in qualitative
appearance, like Fig. 1A). At higher Refr the body dynamics is
dramatically different. Fig. 1 (and Movie 1, which is published as
supporting information on the PNAS web site) shows a simula-
tion for an elliptical body (of aspect ratio 5:1) that illustrates the
stages leading to ‘‘takeoff.’’ At early times (0 
 t 
 0.5), during
an imposed horizontal perturbation (ub 	 10�2), the flow
appears very nearly symmetric (Fig. 1 A). However, when the
horizontal motion evolves freely under fluid forcing (t � 0.5),
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this initial perturbation grows in time and the fluid motions
become increasingly asymmetric as the body both sheds vorticity
into the fluid and interacts with vorticity already there (Fig. 1B).

Fig. 1F shows the body and surrounding vorticity field after 16
flapping periods, by which time the body is moving steadily to the
left and leaving behind a staggered array of positive and negative
vortices. As is typical of flapping flight (4), a vortex is shed near the
trailing edge of the body into the fluid during an upstroke (positive
vorticity) or downstroke (negative vorticity). During a half-stroke
the developing leading-edge vortex remains bound to the body and
typically merges into and strengthens the trailing-edge vortex of the
same sign that is produced during the following half-stroke. The
vortex wake resembles a von Kármán vortex street behind a bluff
body in a flow, but with vortices of reversed sign (11); this ‘‘inverse
von Kármán street’’ has been observed in numerous experimental
and numerical studies of flapping foils and in the carangiform mode
of fish swimming (12).

In numerous simulations we have observed characteristic
events that move the system into locomotion; an example is
shown in Fig. 1C. Into its sixth cycle of flapping the body is
moving upward and shedding oppositely signed vortices from its
two edges. However, the right edge is colliding with a positively
signed vortex that was shed from the opposite edge as the body
was flapped downward on the previous half-cycle. This ‘‘free’’
vortex, at one point a full body length away, now forms part of
a vortex dipole that subsequently carries fluid momentum away
from the body. The horizontal f luid stresses around the body
(Fig. 1D) show the effect of this interaction. There is a large
suction force at the left edge, associated with vorticity creation.
In symmetric f lapping, an opposite suction force would act at the
right edge, but this force has been reduced by the formation of
the vortex dipole. This imbalance in suction force seems to
initiate the locomotion of the body, and after a nearly identical
dipole ejection on the next upward stroke, the body settles into

Fig. 1. The body and fluid dynamics (shown as a contour plot of the vorticity field) during the stages of takeoff for a flapping body in a sample case. The body
aspect ratio is 5:1, body density is 32 times fluid density, and Refr � 35. For the first upstroke (0 
 t 
 0.5), a positive horizontal velocity perturbation is prescribed,
increasing to 0.2% of the peak vertical velocity; subsequently the horizontal velocity is set by horizontal fluid forces. (A) Startup motion and flow are nearly
vertically symmetric, so horizontal forces on the body are small. (B) Nearly four periods after the body is freed, the flow has become very asymmetric, while the
body velocity is still nearly vertical because of body inertia. (C) The body collides with a previously shed vortex at t � 6.2, which decreases suction at the right
edge by creating a vortex dipole. (D) The horizontal component of the pressure (blue) and viscous (red) stresses acting on the surface of the body, at the instant
shown in C. The black line is the sum of the stresses. The arc length around the body surface (moving counterclockwise) is denoted by s, with the right edge at
s � 0 and left edge at s � 2.14. The peak near s � 0 has a much smaller magnitude than the trough at s � 2.14, coincident with the formation of a vortex dipole
at s � 0. (E) The horizontal pressure (blue line) and viscous (red line) forces acting on the body as a function of time. Dashed lines mark the instants of B, C, and
F. Also shown is horizontal velocity of the body, ub(t) (black line), which shows quasi-steady locomotion for t � 8. The green line shows the negative (for separation
from other graphs) of cycle-averaged input power P(t), defined as P(t) � �t�1

t vb(t
)(ŷ� Ffluid(t
))dt
. (F) The subsequent vortex street and center-of-mass trajectory
(dotted line) in the quasi-steady state of unidirectional (leftward) flight. Shed vortices form a staggered array with net fluid momentum directed away from
the body.
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steady locomotion. In other simulations locomotion is instead
initiated by the collision of an incipient leading edge vortex with
a vortex of the same sign. This merging strengthens the resultant
shed vortex, leading to a larger, unbalanced suction force at the
leading edge.

Horizontal f luid forces show clearly the importance of these
collisions in the transition to locomotion. The dynamics unfold
in three stages (Fig. 1E). First, by studying carefully the growth
of horizontal velocity from very small initial amplitudes it can be
shown that the initial growth of horizontal velocity (0 � t � 3)
is exponential in time; this is the signature of a linear instability.
Second is a transition period (3 � t � 8) typified by complex,
large-amplitude temporal and spatial dynamics, during which the
viscous and (dominant) pressure forces act generally in the same
direction. The transition period ends with one or more vortex
collisions, the timing of which depends on how the asymmetric
f low field develops, and can be sensitive to initial conditions.
Finally, as locomotion is achieved (t � 8), the forces move rapidly
toward a 1�2-periodic dynamics with cycle-averaged force on the
body essentially zero. Pressure forces are predominantly in the
direction of motion, and viscous forces are in the opposite
direction. We also find that the cycle-averaged ‘‘input power’’
(Fig. 1E, green line) required to move the body vertically
increases substantially with the loss of flow symmetry, but is
followed by a drop of nearly 50% with the onset of locomotion.

The initial loss of flow symmetry is similar to the classical von
Kármán instability of the symmetric wake behind a bluff body,
as both lead to alternating shedding of vortices above a critical
Reynolds number (13). We have systematically studied the
response to small initial horizontal velocities for vertically os-
cillated, elliptical bodies and find clear evidence for either
exponential growth from (or decay to) the zero horizontal state
as a function of Refr. Fig. 2 shows the calculated growth rate with
an apparently sharp transition to instability occurring at mod-
erate Refr. This transition Refr is apparently independent of mass
ratio �b��, suggesting that the instability is that of the fluid flow
alone and not of the coupled body-fluid system.

Body shape and mass are central to whether and how a
coherently locomoting state is achieved. Fig. 3 A and B (and

Movie 2, which is published as supporting information on the
PNAS web site) shows the trajectory and integrated horizontal
forces on a more slender body (10:1). We find generally that
thinner bodies move more directly and smoothly into steady
locomotion, as shown by the predominantly single-signed fluid
forces in the transition period (4 � t � 9). Also, viscous forces
play a larger role. Fig. 3C (and Movie 3, which is published as
supporting information on the PNAS web site) illustrates the
effect of body mass on the attainment of steady locomotion. Fig.
3C shows the apparently chaotic dynamics of a body that is
lighter (‘‘neutrally buoyant’’) than that in Fig. 1, but otherwise
identical in shape and Refr. The motion of this light body is highly
sensitive to the instantaneous fluid forces on it, and thus it
cannot sustain locomotion against a period of drag, even with the
additional inertia caused by the added mass effect [the increased
force per unit body acceleration required to accelerate a body in
fluid versus a massless medium (14)]. However, light, yet more
slender, bodies seem less susceptible to fluid force fluctuations.

Fig. 2 shows that thinner bodies have a smaller critical Refr for
the symmetry-breaking instability. Furthermore, for the 10:1 and
20:1 bodies the growth rate approaches zero more smoothly at
the critical Refr. Fig. 2 Inset shows the average body velocity U (in
the locomoting state) for a 10:1 body, expressed as the transla-
tional Reynolds number, ReU � �UL��, over a broad range of
Refr. There are three points worth noting. First, there is an
apparently linear onset of translational motion at a positive
Refr � Refr

crit. Second, the putative bifurcation point Refr
crit is

greater than the critical Refr of symmetry breaking. Third, ReU
increases monotonically with Refr and increases with apparent

Fig. 2. The growth rate of the linear instability in �ub� � 10	t, as a function
of Refr for four aspect ratios. The nonmonotonicity of the growth rate for the
10:1 case coincides with a change from linear growth with a single frequency
(which occurs with the 20:1 body) to linear growth with a second, lower
frequency (which occurs with the 5:1 and 3.3:1 bodies). (Inset) The cycle-
averaged horizontal speed during steady locomotion, ReU, (E, right axis) for
a 10:1 body with �b�� � 32, and the corresponding Strouhal number ({, left
axis), as a function of Refr.

Fig. 3. The body dynamics for a more slender body and for a lighter body.
(A) The trajectory of a body with the same mass as in Fig. 1, with the same
start-up condition and Refr, but which is more slender (aspect ratio 10:1). The
wake consists of paired vortices at an oblique angle. (B) The horizontal
pressure (blue line) and viscous (red line) forces acting on the body as a
function of time. The dashed line marks the instant of A. The horizontal
velocity, ub(t) (black line), shows a more gradual ramp-up than in Fig. 1. The
input power P(t) (green line) again drops when steady locomotion is achieved.
(C) The trajectory of a body with the same aspect ratio as in Fig. 1, but lighter
(�b�� � 1), at the same Refr and with the same start-up condition.
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linearity for large Refr. For large Refr the corresponding Strouhal
numbers, St � 2Refr�ReU, have an asymptotic value slightly 
0.2,
which is at the lower end of the range (0.2 
 St 
 0.4) observed
for efficient animal locomotion (15).

The examples of Fig. 3 give a sense of the physical constraints
that delineate the regime of coherent locomotion accessible
from rest. We have quantified this further by scanning the (Refr,
�b��) parameter space for a 10:1 body aspect ratio (Fig. 4). As
expected, below a transition Refr (apparently independent of
�b��) we find that the state of no horizontal motion is apparently
stable (Movie 4, which is published as supporting information on
the PNAS web site). Above the transition Refr there is an
intermediate region in which the body does not coherently
locomote, but engages in a variety of periodic, quasi-periodic, or
apparently chaotic dynamics. The periodic dynamics (Movie 5,
which is published as supporting information on the PNAS web

site) consist of regular horizontal oscillations, typically locked to
a multiple of the flapping period. For small mass ratios, an
increase in Refr brings a progressive loss of periodicity, leading
to the irregular dynamics exemplified by Fig. 3C. For larger mass
ratios, an increase of Refr leads to a locomoting state that shows
decreased St with increased Refr (consistent with Fig. 2 Inset).
Increasing the aspect ratio of the body decreases the ranges, in
both Refr and �b��, of the various nonlocomoting states, and
eases the transition to locomotion.

These results demonstrate how locomotion can arise ‘‘natu-
rally’’ as an attracting dynamical state. We find that the inter-
action of the body with previously shed vortices can both
enhance thrust during locomotion and provide the initial thrust
that drives the body into locomotion. It has been conjectured
that hovering insects enjoy enhanced lift because of the collision
of their wings with previously shed vortices (16). Elaborations of
our study include questions about the consequence of an at-
tached and towed body (whose effect is approximated in the
mass of the flapping wing), optimality in wing shapes and
motions to obtain locomotion (including explicitly broken fore-
aft symmetry), and the dynamics of bodies with purely internal
forcing. The general 3D case introduces additional degrees of
freedom that make the problem far more complex than we have
considered here. However, simulations of 2D flapping airfoils
undergoing prescribed motions can show good quantitative
agreement with experimental studies of 3D finite-span wings, for
the case when the vortex shedding is induced primarily by the
reversal of the stroke direction (17), as it is in the present study.
Complementary to the present study are recent numerical
studies (4, 5) for flapping bodies whose translational motion is
specified, and which identify a moderate Reynolds number
below which thrust forces rapidly decrease. Our results show that
spontaneous rotation of a flapped, axle-mounted wing seen in
experiment (18) is observed in the more physically relevant
regime of translation and demonstrate the critical effects of body
mass and shape. Our study suggests, too, that the higher critical
f lapping frequency and the subcritical, hysteretic transition to
rotation observed in the experiment may have resulted from
axle-bearing friction. Taken together, those studies (4, 5, 18) and
ours may also provide a fluid-dynamical explanation as to why
some organisms change their locomotory strategy with increases
in swimming speed [e.g., the mollusk Clione antarctica moves
from using ciliary bands to flapping wings (19)] and suggest one
possible origin of animal locomotion through the interaction of
an oscillating body or appendage with its f luid environment.
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11. von Kármán, T. (1956) in Collected Works of Theodore von Kármám (Butter-
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Fig. 4. The final state of ub, as a function of Refr, and �b�� (ratio of body to
fluid density), for a body of aspect ratio 10:1. For each point, the same start-up
as in Fig. 1 is used. The ‘‘symmetric’’ region (points marked S) consists of runs
in which ub did not increase above the initial ub of 0.01 during 80 periods of
vertical flapping. ‘‘Periodic oscillation’’ (P0) means the horizontal velocity
repeats to within 5% over at least five consecutive time intervals of the same
length, with mean value 
 0.1, corresponding to back-and-forth horizontal
motion about a fixed point. ‘‘Nonperiodic oscillation’’ (NP) means the hori-
zontal velocity did not meet the periodicity criterion during 80 flapping
periods. The numbers indicate the mean Strouhal number for the case of
steady locomotion, in which the horizontal velocity repeats to within 5% over
at least five consecutive flapping periods, with mean value �0.1.
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