Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2025 Jan 28:2025.01.27.25321175. [Version 1] doi: 10.1101/2025.01.27.25321175

Methylphenidate stabilizes dynamic brain network organization during tasks probing attention and reward processing in stimulant-naïve children with ADHD

Tehila Nugiel, Nicholas D Fogleman, Margaret A Sheridan, Jessica R Cohen
PMCID: PMC11838951  PMID: 39974117

Abstract

Children with ADHD often exhibit fluctuations in attention and heightened reward sensitivity. Psychostimulants, such as methylphenidate (MPH), improve these behaviors in many, but not all, children with ADHD. Given the extent to which psychostimulants are prescribed for children, coupled with variable efficacy on an individual level, a better understanding of the mechanisms through which MPH changes brain function and behavior is necessary. MPH’s primary action is on catecholamines, including dopamine and norepinephrine. Catecholaminergic signaling can influence the tradeoff between flexibility and stability of brain function, which is one candidate mechanism through which MPH may alter brain function and behavior. Time-varying functional connectivity, which models how functional brain networks reconfigure on short timescales, can be used to examine brain flexibility versus stability, and is thus well-suited to test how MPH impacts brain function. Here, we scanned stimulant-naïve children with ADHD (8-12 years) on and off a single dose of MPH. In the MRI machine, participants completed two attention-demanding tasks: 1) a standard go/no-go task and 2) a rewarded go/no-go task. For both tasks, using a within-subjects design, we compared the degree to which brain organization changed throughout the course of the MRI scan, termed whole brain flexibility, on and off MPH. We found that whole brain flexibility decreased on MPH. Further, individuals with greater decreases in whole brain flexibility on MPH exhibited greater improvements in task performance. Together, these results provide novel insights into the neurobiological mechanisms underlying the effectiveness of MPH administration for children with ADHD.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES