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Most codon indices used today are based on highly biased nonrandom usage of codons in coding regions. The background of a
coding or noncoding DNA sequence, however, is fairly random, and can be characterized as a random fractal. When a gene-finding
algorithm incorporates multiple sources of information about coding regions, it becomes more successful. It is thus highly desirable
to develop new and efficient codon indices by simultaneously characterizing the fractal and periodic features of a DNA sequence.
In this paper, we describe a novel way of achieving this goal. The efficiency of the new codon index is evaluated by studying all of
the 16 yeast chromosomes. In particular, we show that the method automatically and correctly identifies which of the three reading
frames is the one that contains a gene.

INTRODUCTION

Gene identification is one of the most important tasks
in the study of genomes. In order to be successful, a gene-
finding algorithm has to incorporate good indices for the
protein coding regions. In the past two decades, a num-
ber of useful codon indices have been proposed. They in-
clude the codon bias index (CBI) (Bennetzen and Hall
[1]), the codon adaptation index (CAI) (Sharp and Li [2];
Jansen et al [3]), the YZ score (Zhang and Wang [4]),
measures based on differences in codon usage (Staden and
McLachlan [5]), hexamer counts (Claverie and Bouguel-
eret [6]; Farber et al [7]; Fickett and Tung [8]), codon
position asymmetry (Fickett [9]), autocorrelations and
nucleotide frequencies (Shulman et al [10]; Fickett [9];
Borodovsky et al [11]), entropy (Almagor [12]), and pe-
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riodicities, especially the period-3 feature of a nucleotide
sequence in the coding regions (Fickett [9]; Silverman and
Linsker [13]; Chechetkin and Turygin [14]; Tiwari et al
[15]; Trifonov [16]; Yan et al [17]; Anastassiou [18]; Issac
et al [19]; Kotlar and Lavner [20]). Most of them mainly
capture the feature of highly biased nonrandom usage of
codons in the coding regions. The background of a DNA
sequence, be it a coding or noncoding sequence, however,
is fairly random. Consequentially, a DNA sequence can be
characterized as a random fractal. Is it possible to develop
a new codon index by simultaneously incorporating the
fractal and periodic features of a DNA sequence? The aim
of this paper is to develop a simple method to achieve such
a goal. Since the codon index obtained this way comple-
ments existing codon indices, it has the potential of being
incorporated into existing gene identification algorithms
so that the accuracy of those algorithms can be improved
and their training be simplified.

The novel codon index proposed here is based on two
incompatible features of DNA sequences: the period-3
and the fractal features. It has been known for a while
that a DNA sequence exhibits fractal properties, with non-
coding regions often possessing, but coding regions of-
ten lacking long-range correlations (Li and Kaneko [21];
Peng et al [22]; Voss [23]). Roughly speaking, a fractal
means a part is similar to another part or to the whole,
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and hence, does not possess any well-defined scale (Man-
delbrot [24]). However, it has been recognized that the bi-
ased nonrandom use of codons in coding regions often
defines a period-3 feature in the coding regions. Period-
3 is a specific scale and hence, is incompatible with the
concept of fractal. We show here that a convenient codon
index can be developed by exploiting this incompatibility.
This is achieved by quantifying the deviation of a DNA se-
quence from its fractal behavior due to the period-3 fea-
ture. Amazingly, this simple measure not only correlates
well with coding regions, but also automatically and cor-
rectly identifies which of the three reading frames is the
correct one (ie, containing a gene). In this paper, we will
illustrate the idea and evaluate the proposed index by
studying all of the 16 yeast chromosomes.

DATABASES AND METHODS

Database

The yeast chromosome sequences and the associ-
ated annotation data used for the analysis are based
on sequence dated 1 October 2003 in the Saccha-
romyces Genome Database (http://www.yeastgenome.org)
and can be obtained from ftp://genome-ftp.stanford.edu/
pub/yeast/data download.

The period-3 feature

The period-3 feature of a DNA sequence has been
used to develop important codon indices (Fickett [9]; Sil-
verman and Linsker [13]; Chechetkin and Turygin [14];
Tiwari et al [15]; Trifonov [16]; Yan et al [17]; Anastassiou
[18]; Issac et al [19]; Kotlar and Lavner [20]). The exis-
tence of this feature can be shown, for example, by Fourier
spectral analysis. In order to apply Fourier transform, first
one has to obtain one or more numerical sequences from
a DNA sequence. A common mapping scheme is to con-
struct four binary sequences from a DNA sequence, one
for each base. For instance, when nucleotide base “A” is
concerned, a sequence u(n) is assigned 1’s at those po-
sitions where “A” is present, and 0’s otherwise. Take se-
quence

S = AATCGGCCCCGAT (1)

as an example. One obtains the following binary se-
quences:

u(A) = 1100000000010,

u(C) = 0001001111000,

u(G) = 0000110000100,

u(T) = 0010000000001.

(2)

Such a scheme has been used, for example, by Voss [23]
and Kotlar and Lavner [20]. Alternatively, one can ob-
tain numerical sequences using the following mapping
rules. (a) C or G → u(n) = +1; A or T → u(n) = −1.
This rule suggested by Azbel [25] maps a DNA sequence
into a sequence of weak/strong hydrogen bonds. (b) C or

T→ u(n) = +1; A or G→ u(n) = −1. This scheme was
proposed by Peng et al [22] and maps a DNA sequence
into a sequence of purine/pyrimidine. When a numerical
sequence u(n) is obtained, the discrete fourier transform
(DFT) can be used to compute its spectrum U(k), which
is given by

U(k) =
N−1∑
n=0

u(n)e(−2π/N)nk, 0 ≤ k ≤ N − 1, (3)

where N is the length of u(n) and k corresponds to the
discrete frequency of (2π/N)k or a period of (N/k). U(k)
can be conveniently used to identify characteristic period-
icities of u(n). Since a coding DNA sequence is comprised
of codons (units of three nucleotide bases) and the nu-
cleotide usage in a coding sequence is highly biased and
nonrandom, a period of 3 is often present in the cod-
ing sequence u(n). This feature is usually referred to as
“period-3.” Consequently, the DFT magnitude or power
spectrum density of u(n) often displays a distinct peak at
k = N/3 (or at a frequency around [N/3] when N/3 is
not an integer). However, the period-3 feature is usually
lacking or weak in noncoding regions (Fickett [9]; Silver-
man and Linsker [13]; Chechetkin and Turygin [14]; Ti-
wari et al [15]; Trifonov [16]; Yan et al [17]; Anastassiou
[18]; Issac et al [19]; Kotlar and Lavner [20]). To illus-
trate this idea, we use Peng’s mapping rule to construct
u(n) from the coding/noncoding DNA sequences of yeast
and perform DFT on u(n) (for simplicity, we have chosen
N = 1026). Typical DFT magnitudes |U(k)| for coding
and noncoding regions are shown in Figure 1. A strong
peak is observed for |U(k)| at k = 1026/3 of the coding
region while no such feature is observed for the noncod-
ing region.

Fractal property and the DFA technique

For other analyses, especially fractal analysis, it is more
handy to construct a random walk (called DNA walk)
from the DNA sequence. The walk y(n) is generated by
forming a partial sum of the u(i) sequence constructed
from the DNA sequence

y(n) =
n∑
i=1

u(i), n = 1, 2, 3 . . . . (4)

Several different versions of DNA walks have been pro-
posed based on different mapping rules for u(n). The
recently proposed 3D DNA walk is also called Z curve
(Yan et al [17]; Zhang et al [26]). Note that the DNA
walks based on the two 1D mapping rules mentioned
above (Azbel [25]; Peng et al [22]) are equivalent to the z-
component and x-component of the Z curve, respectively.
Other types of multidimensional DNA walks have also
been suggested (Berthelsen et al [27]; Cebrat et al [28]). In
this work, we will employ the x-component of the Z curve
(A or T → u(n) = +1; C or G → u(n) = −1) for further
analysis because of its simplicity and efficiency (Stanley
et al [29]). An example is shown in Figure 2 for the first

http://www.yeastgenome.org
ftp://genome-ftp.stanford.edu/pub/yeast/data_download
ftp://genome-ftp.stanford.edu/pub/yeast/data_download
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Figure 1. Representative DFT magnitudes for (a) coding and (b)
noncoding regions in yeast chromosome I.
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Figure 2. An example of a DNA walk constructed from the first
20 000 bases of the chromosome I of yeast.

20 000 bases of the chromosome I of yeast. Note that such
a mapping generates an equivalent (except differing by a
sign) DNA walk for the reverse strand of a DNA sequence.
Hence, analysis based on such a mapping processes both
strands of a DNA sequence simultaneously.

While DNA walks are useful in many applications, in-
terpretation of some computational results, such as long-
range correlations (Stanley et al [29]), are sometimes
problematic, due to patchiness effects along a DNA se-
quence (Karlin and Brendel [30]). To remove such patch-
iness effects, a method called detrended fluctuation anal-
ysis (DFA) was developed by Peng et al [31] and has been
used to identify characteristic patch sizes (Viswanathan et
al [32]). DFA works as follows: first divide a given DNA
walk of length N into �N/l� nonoverlapping segments

(where the notation �x� denotes the largest integer that
is not greater than x), each containing l nucleotides; then
define the local trend in each segment to be the ordinate
of a linear least-squares fit for the DNA walk in that seg-
ment; finally compute the “detrended walk,” denoted by
yl(n), as the difference between the original walk y(n) and
the local trend. The following scaling behavior (ie, fractal
property) has been found for many DNA walks studied:

[
Fd(l)

]2 =
〈 l∑

i=1

yl(i)2

〉
∝ l2H, (5)

where the angle brackets denote ensemble average of all
the segments and Fd(l) is the average variance over all seg-
ments. The exponent H is often called the “Hurst param-
eter” (Mandelbrot [24]). When H = 0.5, the DNA walk
is similar to a standard random walk. When H > 0.5,
the DNA walk possesses long-range correlations. Statis-
tically speaking, a noncoding region is often more likely
to possess the long-range correlation properties (Stanley
et al [29]). This feature, together with the DFA technique,
was used by Ossadnik et al [33] to develop a coding se-
quence finder for genomes with long noncoding regions.
To further illustrate the ideas, we analyze the coding and
noncoding sequences of the yeast genome using the DFA
technique. For a coding/noncoding sequence of length N ,
first a DNA walk y(n) is constructed according to Peng’s
mapping rule. Then the detrended fluctuation Fd(l) is
computed according to (5) for a series of segment sizes
l (l < N). In practice, l is often chosen to be the power
of a common base r, that is, l( j) = r j , j = 1, 2, . . . , logNr .
Notice that logFd(l) ∼ H log l, Fd(l) is approximately lin-
ear on double logarithmic scale when l is within a cer-
tain range [l0, l1]. A linear least-squares fit of data in this
range produces a straight line with slope a and intersect b
from which we can get an estimate of the Hurst parameter
H = a/2. Figure 3 shows a log-log plot of Fd(l) versus l for
(a) a coding and (b) a noncoding sequence of yeast chro-
mosome I. The two sequences are of lengths (a) N = 1742
and (b) N = 3598. We choose l to increment with the
base r = 2 (also for all following analysis that concerns
DFA) and the fitting range with the best scaling prop-
erty is found to be [l0, l1] = [22, 28] for both (a) and (b).
Within this range, the Hurst parameters are (a) H = 0.54
and (b) H = 0.62. The nice scaling law in [l0, l1] indicates
that DNA sequences are fractals. Often, the Hurst param-
eters in noncoding regions are larger than those in coding
regions, suggesting that noncoding regions often possess
stronger long-range correlations. Sometimes this feature
is termed lesser complexity in noncoding regions (Ossad-
nik et al [33]; Stanley et al [29]).

Deviation from fractal scaling
due to period-3 signal

Intuitively, when a periodicity exists in a sequence,
the fractal scaling law does not hold at that particular
“scale” defined by the periodicity. Specifically, for DNA
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Figure 3. Representative period-3 fractal deviation (PFD) for (a) coding and (b) noncoding regions in yeast chromosome I.

sequences, a normally strong period-3 signal in coding
regions causes a “deviation” from the sequence’s fractal
“background.” On the contrary, for a noncoding region,
such deviation, if any, is typically much smaller than that
of a coding region. Based on the DFA technique, we have
developed a novel codon index which quantifies such de-
viation from the fractal scaling law due to the period-3
feature, which we will denote by period-3 fractal devia-
tion (PFD) for simplicity.

For a DNA walk y(n) of length N , after computing
its detrended fluctuation using DFA and identifying the
best fitting range [l0, l1], an approximation of Fd(l) can be
obtained by

log F̂d(l) = a log l + b. (6)

The deviation of y(n) is defined as the difference between
log F̂d(l) and logFd(l) at l = 3, that is,

PFD = ∣∣ log F̂d(3)− logFd(3)
∣∣. (7)

To verify our intuition about the capacity of this in-
dex in distinguishing coding and noncoding regions, we
have computed the PFD value for a large number of the
verified open reading frames (ORFs) and noncoding seg-
ments from all of the 16 yeast chromosomes. An example
of representative PFD values for coding and noncoding
regions is shown in Figure 3. We observe that for the cod-
ing region, the fluctuation Fd(l) at l = 3 deviates severely
from the power-law relation (ie, the straight line in a log-
log plot in Figure 3), while the deviation for the noncod-
ing region is relatively small.

One may wonder if any DNA segment that belongs
to a coding region has a large PFD. In fact, this is not

the case. The quantification of the period-3 feature by
the deviation from fractal scaling is reading-frame de-
pendent. When the coding segment starts with the gene-
containing reading frame (the first nucleotide of a codon),
the period-3 feature collides with the DFA technique at
the scale of l = 3 and results in a large PFD. When the
segment starts with an incorrect reading frame, the peri-
odicity of 3 cannot be captured by DFA and the deviation
value is small. For noncoding regions where the period-
3 feature is usually lacking or weak, the PFD does not
change much for the three reading frames. Note that the
DFT magnitude for a coding region is similar for all three
reading frames while the DFT phase is not. Codon in-
dices based on the latter has improved performance com-
pared with algorithms that use DFT magnitude (Kotlar
and Lavner [20]). The PFD measure, whose value also
varies for different reading frames, not only quantifies a
sequence’s coding strength well but also locates the read-
ing frame correctly. The latter statement will be made
more concrete shortly.

Algorithm for computing period-3 fractal
deviations along a DNA sequence

Based on the observations above, we employ a sliding
window technique (with window size w) to calculate PFD
along a DNA sequence in a systematic fashion. The algo-
rithm can be stated in four steps.

Step 1. Given a DNA sequence of length N , con-
struct a DNA walk of length N based on the simple
purine/pyrimidine rule (Peng et al [22]). Let w be the size
of the sliding window. When successive windows overlap
by w − 1 bases, a total of N − w + 1 windows can be
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Figure 4. Distributions of MAXFD for the coding (solid curves) and noncoding (dashed curves) subsets of the 16 yeast chromosomes.
The sliding window size is w = 512. The parameters n1 and n2 designate the coding/noncoding segments with lengths greater than n1

and n2, respectively. (a) n1 = n2 = 1, (b) n1 = n2 = 256, (c) n1 = n2 = 512, (d) n1 = n2 = 1026. See the text and Table 1 for more
details.

obtained. For each window, the value of PFD can be com-
puted based on (7).

Step 2. By common sense, one would associate each
PFD for a window with the center of the window. In or-
der to preserve information about the reading frames,
however, this rule is slightly modified as follows: denote
the position of the window along the DNA sequence by
[n, n + w − 1]. We associate its PFD with the position
n + 3 j, where j is the largest integer such that 3 j ≤
w/2.

Step 3. Form three reading-frame-specific deviation
sequences by dividing the PFD(n) sequence into three
subsets, PFD1(1 + 3m), PFD2(2 + 3m), PFD3(3 + 3m),
m = 0, 1, 2, . . ., corresponding to the positions (1, 4, 7, . . .),
(2, 5, 8, . . .), (3, 6, 9, . . .), respectively. For later conve-
nience, we will denote PFD1(1 + 3m), PFD2(2 + 3m),

PFD3(3 + 3m) by PFD1(m), PFD2(m), PFD3(m), m =
0, 1, 2, . . ..

As we will illustrate in the next section, the above three
steps automatically exhibit which reading frame is the cor-
rect one. Step 4 defines a simple but efficient codon index
MAXFD.

Step 4. After PDFi, i = 1, 2, 3 are obtained, we compute

MAXFD =
1

�M/3�
�M/3�∑
m=1

max
(

PFD1(m),PFD2(m),PFD3(m)
)
.

(8)

Let δ0 be a threshold value. A segment under study is de-
clared “coding” if the codon index MAXFD is greater than
δ0 and “noncoding” otherwise. In practice, the threshold
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Figure 5. The reading-frame-specific PFDi, i = 1, 2, 3 curves for a segment of DNA in yeast chromosome I (from nucleotide 58 000 to
nucleotide 70 000). The sliding window size is w = 512. A 5th-order moving average filter has been applied. Colored horizontal bars
on the two lines below the deviation curves are the open reading frames on the two strands of the chromosome, (first line: positive
strand; second line: reverse strand). The orange and blue bars represent verified ORFs while a gray bar represents a dubious ORF.
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Figure 6. Period-3 fractal deviations (PFDs) of yeast chro-
mosome I (a segment from nucleotide 141 500 to nucleotide
160 000).

value δ0 is usually chosen to be where the cumulative dis-
tribution for the coding regions intersects with the com-
plementary cumulative distribution for the noncoding re-
gions (See Figure 4).

RESULTS AND DISCUSSION

The above algorithm has been used to calculate the
PFD values of all of the 16 yeast chromosomes. To show
that the algorithm is largely independent of the sliding
window size as well as to show that the method is applica-
ble to short DNA sequences, sliding window sizes of 128,
256, 512, and 1024 have been tried, with the best scaling
regions identified as [22, 24], [22, 25], [22, 26], and [22, 27],
respectively. For each window size, after a PFD sequence
is obtained for an entire chromosome sequence, the three

reading-frame-specific deviation sequences PFDi(m), i =
1, 2, 3, are plotted against their nucleotide positions along
the chromosome in red, green, and black, respectively. For
all four window sizes, the three deviation curves thus ob-
tained exhibit similar and very interesting patterns. As
examples, we have shown in Figures 5 and 6 the three
reading-frame-specific PFDi(m) sequences for DNA seg-
ments in yeast chromosome I, from nucleotide 58 000
to nucleotide 70 000, and from 141 500 to nucleotide
160 000, respectively, where the window size w is chosen
to be 512. To appreciate the correlations between the pat-
terns of the variations of the PFDi(m) sequences and the
coding/noncoding regions, the locations of the genes from
both positive and reverse strands of the DNA sequence are
also shown below the PFDi(m) curves. We observe a few
interesting features. (i) Generally, the three curves, corre-
sponding to three different colors, do not overlap with one
another. This is a necessary condition for the three reading
frames to be separable. (ii) In coding regions, both in the
positive and the reverse strands, typically one of the three
PFDi curves displays a large value and separates consider-
ably from the other two curves. By systematically compar-
ing the yeast genome annotation data with the PFDi curve
with the largest values among the three, we have found
that this is indeed the correct reading frame. Presumably,
by searching for start and stop codons, one can aptly find
out whether the gene is on the positive or the reverse
strand of the genome, and determine which region(s) de-
fine(s) the gene. If this simple assumption would work,
then a gene-finding algorithm that employs MAXFD as
a codon index would require minimal amount of train-
ing. (iii) In noncoding regions, the three PFDi curves are
mixed. That means the three reading frames are more or
less equivalent and inseparable.

We now evaluate the efficiency of the MAXFD as a
codon index by studying all of the 16 yeast chromosomes.
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Table 1. Accuracy of the PFD-based coding-region identification algorithm on different coding/noncoding subsets. The parameters
N1 and N2 are the numbers of coding and noncoding sequences with length greater than n1 and n2, respectively. A DNA segment is
declared “coding” if MAXFD > δ0 and “noncoding” otherwise. Accuracy is defined as the average of sensitivity and specificity. The
threshold δ0 is set at where sensitivity equals specificity.

n1 N1 n2 N2 δ0
Sensitivity/specificity

w = 512 w = 128

1 4125 1 5993 0.1800 82.5% 84.7%

256 4067 256 4186 0.1660 85.7% 86.7%

512 3756 512 1948 0.1500 89.8% 89.4%

1026 2674 512 1948 0.1620 92.5% 91.2%

1026 2674 1026 650 0.1320 95.4% 94.4%

Our sample pool is comprised of two sets of DNA
segments: the coding set, which contains 4125 verified
ORFs (fully coding regions or exons), and the noncoding
set, which contains 5993 segments (fully noncoding re-
gions or introns). Different subsets of coding/noncoding
segments are extracted according to the lengths of the
sequence segments. These subsets are described by four
parameters, N1, n1, N2, n2, where N1 and N2 are the
numbers of coding and noncoding sequences with length
greater than n1 and n2, respectively. After subsets of cod-
ing/noncoding sequences are chosen, MAXFD is then
computed for all segments in those subsets. We denote the
cumulative distribution of MAXFD over the two subsets
as PC(δ) and PNC(δ). Then 1 − PC(δ) is the proportion
of coding segments in C with MAXFD > δ and PNC(δ)
is the proportion of noncoding segments in NC with
MAXFD < δ. We define sensitivity as the proportion of
segments in set C correctly labeled as “coding” and speci-
ficity as the proportion of segments in set NC correctly
labeled as “noncoding.” Given a threshold δ0, the sensi-
tivity and specificity are 1 − PC(δ0) and PNC(δ0), respec-
tively. If we define the percentage accuracy as the average
of sensitivity and specificity, an optimal decision thresh-
old is often set at where sensitivity equals specificity. By
plotting 1 − PC( f ) and PNC( f ) together, the optimal de-
cision threshold is the abscissa of the point where the two
curves intersect. The corresponding percentage accuracy
is then simply 1−PC(δ0) (or PNC(δ0), since PNC(δ0) = 1−
PC(δ0)). Figure 4 shows the sensitivity/specificity curves
for four configurations of (n1, n2). More detailed statistics
for all five configurations of (n1, n2) studied are summa-
rized in Table 1, for two window sizes, w = 512 and 128.
With sliding window size w = 512, the percentage accu-
racy on the entire sample pool is 82.5%. When only those
segments longer than the window size are concerned, the
accuracy is increased to 89.8%. For coding and noncoding
subsets with segment lengths greater than 1026, the accu-
racy is further improved to 95.4%. While one might think
the statistics shown in Table 1 may become a lot worse
when a much smaller sliding window size is used, this is
not the case. In fact, when the sliding window size is re-
duced to 128, the accuracy for the long coding/noncoding
sequences is only slightly degraded, while the accuracy
for the entire coding/noncoding sequences is actually im-

proved. Overall, we would conclude that the codon index
proposed is fairly independent of the sliding window size.

In experiments involving expressed sequence tags
(ESTs), the sequences available may all be short. Can the
MAXFD index proposed still be useful? The answer is yes.
When a sequence is very short, it is not necessary to use a
sliding window to obtain three deviation curves. Instead
one can simply obtain three values, PFD1, PFD2, PFD3,
from the sequence and find MAXFD using (8). If the value
is very large, one has good reason to assume that the sus-
pected EST indeed belongs to a coding region. Otherwise,
it may not. When the former is the case, the reading frame
with the largest PFDi, where i ∈ {1, 2, 3}, very likely indi-
cates the correct reading frame (assuming there is no er-
ror in the sequence). When the sequence under study is
not too short, one can then employ the sliding window
technique. The PFD1(m), PFD2(m), PFD3(m) curves that
can be obtained this way will look like those obtained for
a short segment of those shown in Figures 5 and 6. We
note that the procedures outlined in this here have been
applied to some experimentally obtained short DNA seg-
ments provided by Drs. Farmerie and Liu of the Institute
of Biotechnology at the University of Florida.
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