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Stochastic Versions of the Hodgkin-Huxley Equations

Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 USA

ABSTRACT A Hodgkin-Huxley model algorithm for the numerical simulation of noise in neurons is contracted from a master
equation description (cellular automoton) into a Langevin description. This reduction reduces the time required for a
simulation by about two orders of magnitude. Earlier work is summarized, condensed, and made explicit to make the
algorithm transparent and facilitate applications. Two approximate treatments are reported. An extension of this approach is
presented that includes spatial dependence and the propagation of a noisy action potential along an axon.

INTRODUCTION

The theoretical foundation for our present understanding of
nerve membrane ion currents was laid by Hodgkin and
Huxley (1952). Their ideas determined experimental ap-
proaches until the development of the patch-clamp tech-
nique of Neher and Sakmann (1976), which permitted the
possibility of measuring ion currents through individual ion
channels. This advance has revolutionized both experimen-
tal and theoretical approaches. It has made accurate deter-
mination of channel model parameters possible. A crucial
realization has been that individual ion channels are essen-
tially stochastic entities that open and close in a random way
(Lecar and Nossal, 1971a,b; Skaugen and Wall0e, 1979;
Hille, 1992; Nossal and Lecar, 1991). Experimental and
theoretical work by DeFelice and co-workers (DeFelice and
Isaac, 1992; Strassberg and DeFelice, 1993) produced a
computer model, of cellular automaton type, that described
the noise properties of clusters of ion channels in a small
area of membrane. It was this work that prompted our entry
into this area of research (Fox and Lu, 1994).
We were able to show that if the ion channel density was

sufficiently large, then the cellular automaton model could
be contracted into a Langevin description. This fact is a
result of capacitative coupling among nearby channels, each
depending on the same local value of the membrane poten-
tial. In the cellular automaton model, every ion channel
subunit is independently modeled, and it is this feature that
makes this treatment of the simulation so time intensive,
even on the most powerful computers. The Langevin de-
scription involves channel density variables instead, thereby
reducing the number of variables needed for the simulation
by orders of magnitude. This reduction is achieved by
noting that a cellular automaton model is equivalent to a
master equation model, which in turn is reducible (through
an intermediate Fokker-Planck equation) to a Langevin
model (Fox and Lu, 1994). We have recently performed
numerical experiments on several approximations to the
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Langevin description. When these approximations are legit-
imate, further savings in time are achieved. The purpose of
this paper is to make these methods accessible to a wider
group of researchers and to extend the results to include
spatial dependence.
The paper is organized as follows. In the Materials and

Methods section, a summary of our earlier work is presented
in which explicit expressions appear that had been left
implicit in the earlier paper (Fox and Lu, 1994). Only if the
reader has worked through the derivations in this earlier
paper will some, but not all, of these equations already have
been met. This includes the basic theory as well as the noise
simulation methods. In the Results section, the numerical
experiments done recently on approximations to the com-
plete Langevin equation are described. A number of appli-
cations by other researchers are cited. In addition, algo-
rithms for an extension to spatial dependence are presented
for the first time. In the Discussion section, we end the
paper with a number of proposals for further work.

MATERIALS AND METHODS

Summary of Hodgkin-Huxley stochastics

This section expands the results obtained in our earlier paper (Fox and Lu,
1994). These explicit algorithms greatly simplify one's ability to imple-
ment applications of the earlier, implicit results.

The results take on three distinct forms. There is a fundamental matrix
Langevin description, made explicit here in all details for the first time.
There is an approximation to this description that is much more readily
implemented numerically and has been found to be very accurate for
certain parameter regimes. There is also a further approximation to the
noise terms that again simplifies implementation without loss of accuracy
in approprate parameter regimes. Tests of these two approximations are
described in the Results section.

Noiseless Hodgkin-Huxley description
The membrane voltage evolution equation is (Nossal and Lecar, 1991;
Katz, 1966)

d 1
dt Vm -C [GL(Vm-EL)+ GK(Vm-EK) (1)

+ GNa(Vm - ENa)]
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where Vm is the membrane potential in (mV); C is the specific membrane
capacitance (,uF/cm2); EL is the leakage reversal potential (mV); EK is the
potassium reversal potential (mV); ENa is the sodium reversal potential
(mV); GL is the leakage conductance density in millisiemens per square
centimeter (mS/cm2); GK is the potassium conductance density (mS/cm2);
and GNa is the sodium conductance density (mS/cm2).

The potassium and sodium conductance densities are given by

GK - FKNKn and GNa = FNaNNahm ,

Complete Langevin description
The n4 term in the potassium conductance density in Eq. 2 represents the
idea that a potassium channel has four subunits and is conducting only if
all four subunits are in the open state. The total number of potassium
channels in area A is NKA. Let xi be the fraction of NKA channels with i
subunits in the open state, for i = 0, 1, 2, 3, or 4. Clearly,

(2)
where rK is the potassium conductance per channel in picosiemens (pS);
rNa is the sodium conductance per channel (pS); NK is the potassium
channel density (cm-2); and NNa is the sodium channel density (cm-2).

In Fox and Lu (1994), the symbols NK and NNa denote channel numbers
rather than densities, and are equal to NKA and NN,A in the present
notation, where A is the area of a membrane patch.

The gate parameters, n, h, and m, satisfy relaxation equations

d
dtn = a.(l- n) - 3.n

d
dt h = ah(l- h)- 3hh

dt
d-im = a.(, - mn) - (.3mi.

(3)

(4)

(5)

The a's and O's are gate opening and closing rates (ins-') and depend on
the membrane potential, V1,r, according to empirically determined formulas
(Strassberg and DeFelice, 1993; Rubinstein, 1995), such as

0.01(Vm + 55)
1 - exp[-(Vm + 55)110]

and

On= 0. 125exp[-(Vm + 65)/80]

ah= 0.07exp[-(Vm + 65)/20]

1
t3h = 1 + exp[-(Vm + 35)/10]

0.1(Vm + 40)
am = 1 - exp[-(Vm + 40)/10]

g3m = 4 exp[-(Vm + 65)/18].

(6)

XO = 1 -X -X2-X3-X4- (10)

In Fox and Lu (1994) it is shown that

d
dt x = RP(X) + Spqgq(t), (1 1)

where p, q = 1, 2, 3, or 4; q is summed; i is shorthand for xX, X2, X3, and
X4; and the stochastic terms are Gaussian with moments

(gq(t)) = 0 and (gq(t)gq,(t')) = 25qq,b(t - t'). (12)

The matrix Spq satisfies

(S2)pq = Dpq, (13)

and Rp is defined by

- (axj Spq)Sjq, (14)

where j and q are summed. Kp(i) is defined for p = 1, 2, 3, and 4 by

KP(X) = -(pI3p + (4 -p)an)xp + (p + 1)/3nXp+I(1 - 8p4)
+ (4 - (p - 1))nxp-I, (15)

and is defined by

1
() Dpq(Xi) = 2NK [6pq{(P13n ± (4 - p)a.)xp + (p + l)i3nxp+l

(8)
A noiseless numerical simulation involves simultaneous solution of

Eqs. 1-8. A typical simulation might pertain to a membrane area of, say,
1 ,tm2, which is 10-8 cm2. In such an area, there are perhaps a few tens of
channels, e.g., NK - 18/,um2 18 x 108/cm2. Therefore, GK has units of
order pS x 18 x 108/cm2 1.8 mS/cm2. If the individual channel
conductance is, say, 20 pS, then GK 36 mS/cm2. Typically, C = I
pff/cm2. Thus, in Eq. 1, the potassium term on the right-hand side gives a
rate of order

GK mS 10 -3A/V 1 36
C - 36 = 36 10-C/V = 06 sms' (9)

which suggests that the natural unit for time is milliseconds. We find we
get very good accuracy in numerical simulations using step sizes on the
order of 0.005-0.01 ms.

* O - 8p4) + (4 (p- 1))anxp- }

- P3nXp8q p-I O(1 - q 4) - (4 - p)anxpq p+ I

- qf.3nq6pq-I(1- 6p4)- (4 - q)anXq8pq+I].

(16)

Equation 11 replaces Eq. 3, and the potassium conductance density in Eq.
2 must be changed to

GK = FKNKX4 (17)

before it is used in Eq. 1. Using Eqs. 13 and 16, it is clear from Eq. 14 that
Rp and Kp differ by a term of order I/NKA, which is usually small enough
to be ignorable without significant loss of accuracy. The fact that Rp and Kp
are not identical has to do with technicalities involving the Ito and Stra-
tonovich versions of stochastic calculus (Arnold, 1974). We use the Stra-
tonovich interpretation throughout this paper.

These results for Kp(i) and Dpq(i) are the first and second moments of
an underlying transition probability. Let Cp denote the number of channels
with p subunits in the open state. For a short time interval, At, the

and

and
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expression for the transition probability, W(C',C), is found to be given by

w1c@, C) = ECpI- P3nAt - (4 p)aAt]8p, p,0

+ [pf3nAt6p1 p-1I + (4 -p)anAt,p, p+ 1 (18)

* ( 1 - p 4)]8(q; cp lq5; Cp + IIA2)

in which the summation is over both p and p' from 0 to 4, and in which A0
and A2 denote Kronecker delta products for the C' and C components. A0
means that all components with the same index are equal, and A2 means
that all but those components with indices p and p' are equal. This
expression is used to calculate Kq(C) and Dr,(C) according to the formulae

Kq(C) = J d4C'(Cq- Cq) Wn(C', C)/At (19)

2Drs(C) = NKA d4C'(C; -Cr)(Cs -Cs)Wn(C' C)/At.

(20)

Taking the limit At -*0 and setting i C/=NK yields Eqs. 15 and 16. Notice
that the A0 term in Eq. 18 makes no contribution to either Eq. 15 or Eq. 16.

The hm3 term in the sodium conductance density in Eq. 2 represents the
idea that a sodium channel has four subunits, one of type h and three of
type m, and is conducting only if all four subunits are in the open state. The
total number of sodium channels is NNaA. Let Yjk be the fraction of the
NNaA channels with j m-subunits in the open state and k h-subunits in the
open state, for] = 0, 1, 2, or 3 and k = 0 or 1. Clearly,

YOO = 1 - YIo -Y20 - Y30 - YoI -Yll - Y21 - Y31* (21)
In Fox and Lu (1994) it was shown that

d
dt Ypr = Rpr(Y) + Sprqsgqs(t), (22)

in which p, q = 0, 1, 2, or 3; r, s = 0 or 1 (excluding p -0 and r = 0
simultaneously, and q = 0 and s = 0 simultaneously); q and s are summed;
y is shorthand for yI0, Y20, Y30, YOI' YI 1 Y21, and Y31; and the stochastic terms

are Gaussian with moments

(gqs(t)) = 0 and (gqs(tgq,s,(t')) = 2Sqq8ss8(t - ).
(23)

The matrix Spr qs satisfies

(S 2)pr qs =Dpr qs' (24)
and Rpr is defined by

I a \
Rpr = Kpr Sprqs Sabqs, (25)aYab /

in which a, b, q, and s are summed. Kpr6G) is defined for p = 0, 1, 2, and
3 and r = 0 or 1, but not both p = 0 and r = 0 simultaneously, by

Kpr(A) = -(p|3m + (3 -p) am + rh + (1 - r)ah)Ypr
+ (P + 1)0rniYp+1r(l 6p3)

(26)
+ (3 - (p - 1))amyp1 r(l - pO)
+ (r + O)PhYpr+1( - Sri)
+ (1 - (r - l))ahy1,-(l - O)

and Dprqs(5) is defined by

1
Dprqs(Y) = 2NN£ [8pq6rs{(Pr3m + (3 - p)am)ypr

+ (p + l)3rmyp+lr(l -p3)
+ (3 - (p - 1))amyp-Ir(1 - 5po)
+ (rt3h + (1 - r)ah)ypr + (r + 1)3ihypr+l

* (1 - 8r,) + (1 - (r - l))ahypr-l(I - rX
- brs{I4mSqp-I(1 - 6q3)Ypr + (3 - p)am5qp+l
* (1 - Sqo)Ypr + ql3m8pq- 1 -1 p3)Yqs
+ (3 - q)amSpq+I(1 -1 po)Yqs}
- 6pq{rl3bhsr-I(1 - sl)Ypr
+ (1 - r)ah6sr+l(l - 8sO)Ypr + SI3h6rs-1
* (1 - 6rl)Yqs + (1 - s)ah$rs+1(I - 5rO)Yqs}].

(27)

Equation 22 replaces Eqs. 4 and 5, and the sodium conductance density in
Eq. 2 must be changed to

GNa = FNaNNa Y3 1 (28)

before it is used in Eq. 1. Using Eqs. 24 and 27, it is clear from Eq. 25 that
Rpr and Kpr differ by a term of order l/NNaA, which is usually ignorable
without significant loss of accuracy.

These results are obtained in a manner similar to the way in which the
corresponding formulae for potassium channels were obtained. First, we
need transition probabilities like those in Eq. 18, but with two differences.
For the m-subunits, the upper value for the index is 3 rather than 4, and for
the the h-subunit, the upper index is 1 rather than 4. In addition, the a and
(3 subscripts are, respectively, m and h rather than n. Second, the transition
probability for a sodium channel is the product of the m and h transition
probabilities, but only including those terms to first order in At.

Numerical implementation of noise terms

Suppose we contemplate a numerical simulation of the simultaneous sys-
tem of equations made up of Eqs. 1, 3-8, and 10-28 (recall that Eq. 2 is
replaced by Eqs. 17 and 28). Let the step size be denoted by At. One may
use an Euler integration for the nonstochastic terms, although it is more
accurate to use at least Runge-Kutta 2, if not Runge-Kutta 4. To this, at
each time step, must be added the noise terms. These are generated by the
Box-Muller algorithm (Knuth, 1969), which in principle exactly generates
Gaussian noise from uniformly distributed random numbers. The individ-
ual stochastic terms in Eq. 12 or Eq. 23 are created as follows. Let a and
b be two uniformily distributed random numbers from the unit interval. Let
Ag denote either gq(t) or a kqs(t) depending upon which term is being
considered. The simulated noise term is given by

Ag = 4At log(a) cos(2'ub). (29)
Notice the factor of 4, which is twice the factor of 2 in the second moments
of Eqs. 12 and 23. The symbol "log" denotes the Naperian logarithm. A
term such as this is needed for each noise term, and each must utilize
independently generated random numbers a and b (in fact, replacing
cos(27rb) with sin(27rb) in Eq. 29 creates an independent Gaussian random
number, so that a and b may be used to create two independent Gaussian
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random numbers at the same time). Because Gaussian random numbers can
have arbitrarily large positive or negative values, it is possible that in the
course of the simulation an xp value or a Ypr value will fall outside the range
of [0,1], which is required of these simple fractions. Thus a simulation code
must be written such that this restriction is satisfied at each time step; this
is easily achieved by simply including a do-loop that is exited if the desired
restriction is realized for the generated a's and b's. We have found that this
precaution avoids unwanted numerical overflows and that the do-loops are
rarely repeated for step sizes on the order of 0.005 ms.

Higher order noise algorithms
In a number of recent papers (e.g., Collins et al., 1995a,b) that utilize a
reduced description of the neuronal firing dynamics, higher order noise
simulations have been used. In this work, the Fitzhugh-Nagumo equation
(FHN) is used and is integrated by a second-order Runge-Kutta scheme
that also includes noise terms of higher order than the Box-Muller algo-
rithm. These higher order noise terms are based on an algorithm for colored
noise (Mannella and Palleschi, 1989). The spirit of this approach is to use
noise (called "colored noise") that has an exponential correlation instead of
the Dirac delta correlation of Eqs. 12 and 23. The relaxation time constant
in the exponential correlation can be made sufficiently small in the simu-
lation so that one is effectively simulating white noise. Using this proce-
dure is much easier than attempting to directly implement a higher order
white noise algorithm. By doing this with the noise, the entire simulation
is made second order in both the secular terms and the noise terms.

As can be seen from Eq. 29, the white noise algorithm depends on the
square root of the step size. A second-order Runge-Kutta integration of the
secular terms would include the first and second powers of the step size. To
get noise terms to the same order, it is necessary to include terms depend-
ing on step size to orders 1/2, 2/2, 3/2, and 4/2. In fact, the Mannella-
Palleschi algorithm includes terms only to order 3/2. Fox (Fox, 1992;
Honeycutt, 1990) has extended this algorithm to order 4/2 in the noise.
Should it prove to be desirable to use higher order noise terms in the
Hodgkin-Huxley simulations described above, this is the algorithm to use.

obvious)

(gm(t)) = 0

and

2 a.m(l-m)+ (.)m
(()g() =NNaA 2 (33)

In this correlation formula, am, g3m. and m have the instan-
taneous values for the time step involved. The Box-Muller
algorithm in this case requires that we add, in analogy to
Eq. 29,

Im(1 - m)+N)mm
Agm = 2At NNA log(a) cos(2'nTb). (34)

It is now necessary, as before, to include do-loops to guar-
antee that m, n, and h do not leave the unit interval [0, 1].

Another approximation

In Eq. 34, the instantaneous value of m occurs. If the
relaxations of n, h, and m are sufficiently faster than the
dynamics for Vm, then it is possible, and accurate, to replace
m (and n and h in the corresponding formulas) by its
instantaneous steady-state value, ms, according to Eq. 5.
This is given by

am
am + g3m (35)

and this implies thatRESULTS

An accurate approximation

The complete Langevin treatment given above requires that
at each time step the square root matrices, S, must be
computed for both the potassium and the sodium terms.
Although very efficient routines are available for the imple-
mentation of these steps, they nevertheless slow down the
computation. Recently we have shown that a faster approx-
imate implementation is possible in which one numerically
solves the simultaneous system of equations, Eqs. 1-8, but
in which Eqs. 3-5 are made stochastic directly. They take
the form

d
dt n = an(I - n)- /3Bn + gn(t) (30)

dt

d
dt m = am(1 - m) - 3mm + gm(t), (32)

in which the stochastic terms are Gaussian with moments
(only the m case is given, because the others are then

am(1 - MS) + f3mMs am/3m
2 am + 3m9 (36)

in which the right-hand side depends on the instantaneous
value of Vm. The Box-Muller expression is accordingly
modified.

Interpretation of the approximations

The subunit interpretation of the nonlinear terms, n4 and
m3h, in the Hodgkin-Huxley equations preceded the struc-
tural determination of these ion channels. It represents a
simplified picture of their true structure and of their coop-
erative protein interactions. Thus these terms in the dynam-
ics should not be taken too literally. It is gratifying, there-
fore, to find that various simplifying approximations in the
treatment of noise properties of these terms, such as those
described above, lead to results very close (within 1%
error) to those obtained from the complete Langevin de-
scription. Thus far, rigorous mathematical criteria for the
applicability of the approximations have not been deduced,
and the quality of approximate results must be assertained
empirically.
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Applications of the noise algorithm

Threshold fluctuations in a sodium channel model of the
node of Ranvier have been studied with a Hodgkin-Huxley
automaton model of the DeFelice type (Rubinstein, 1995).
Up to 32,000 channels of the m3h subunit variety were
simulated. Rubinstein (personal communication) has re-
ported implementation of the algorithm presented here. He
found a speedup of two orders of magnitude over the
automaton algorithm. For 800 or more channels, the two
algorithms were statistically indistinguishable with regard
to poststimulus time histograms and input output functions.

Facilitation of synaptic transmission involving calcium
channels is another current area of study (Bertram et al.,
1996; Bertram and Sherman, 1996). The stochastic charac-
ter of calcium channel opening and closing is considered
important for these studies, and the algorithm for sodium
and potassium presented here, modified for calcium, is
being considered for these investigations (Sherman, per-
sonal communication).
We are currently engaged in benchmarking the Langevin

method against the earlier cellular automaton results of
scheme 2a of Skaugen and Wall0e (1979).

Spatial dependence in the
Hodgkin-Huxley equations

In addition to the list of variables given earlier, the inclusion
of spatial dependence requires two more quantities, a and ri:
a is the axon radius (cm); ri is the specific electrical resis-
tivity of the cytoplasmic core (ohm-cm).

These will suffice for consideration of a long axon with a
cross-sectional circumference sufficiently small that cir-
cumferencial spatial dependence is ignorable. Thus the
present treatment covers a one-dimensional axon, with the
spatial variable x chosen to represent the position along the
axon.

Propagation of an action potential along the axon is
described by the cable equation (Nossal and Lecar, 1991;
Katz, 1966)

a a2Vm aVm
~~ c ~~+ I oni(Vm, t),

2r, ax- = at
(37)

Complete Langevin description

In the complete Langevin description, Eqs. 37 and 38 are
solved together with Eqs. 17 and 28 in place of Eq. 2. In
Eqs. 11 and 22, the noise terms are multiplied by S matrices
that depend on both x and t because the associated D
matrices in Eqs. 16 and 27 depend on the a's and (3's, which
in turn depend on Vm(x, t). Moreover, the membrane patch
area A in the prefactor denominators of Eqs. 16 and 27 must
be replaced by 2,raAx, the area of a segment of axon with
circumference 2iwa and length Ax. This complete Langevin
treatment is very intensive numerically, because the D ma-
trix square roots, the S matrices, must be evaluated at each
value of x for each increment of time At. A considerable
savings of time accrues if either of the approximations
discussed above is valid.

Approximate treatment

In the approximate treatment we solve simultaneously the
system of equations made up of Eqs. 37, 38, 2, and 30-34.
However, it must be understood that n, m, and h are func-
tions of x, so that once the x axis has been discretized for the
purpose of a numerical integration, there are n, m, and h
variables for each discrete value of x. Moreover, the a's and
,B's in these equations depend on the local x values of
Vm(x, t). In addition, in the denominators of Eqs. 33 and 34
we must replace A by 27TaAx, as was discussed above. It is
even faster to make use of the additional approximation of
the noise correlations given by Eq. 36, modified for each
position x.

Numerical integration with spatial dependence

If the nth discrete position along the axon is denoted by xn,
then the numerical integration of Eq. 37 may take the form
(this is called the forward time centered space (FTCS)
method; Press et al., 1988)

1
VM(Xn,9 t + At) = Vm(Xn, t) - At IioniJ(VmXn, t))

a
+ At 2CA (VM(Xn+I,)t)+ VM(Xn- I ,t)

where
- 2Vm(xng t)).

Iionic(VmI t) (38)

= GL(Vm- EL) + GK(Vm- EK) + GNa(Vm ENa),

and the conductance densities are given by Eq. 2. Here we
must consider the membrane potential, V1m, to be a function
of both x and t. In the simplest cases, C, NK, NNa, ]K, and
FNa are constants with respect to x. However, they can be
given x dependence in Eqs. 37 and 38 if desired, as long as
they remain independent of t. The gate parameters n, m, and
h, on the other hand, will be functions of both x and t

through their dependence on Vm(x, t).

(39)

Typical values for the parameters are a 10-4_10-3 cm,
ri 30-100 ohm-cm, and Ax 10-4 cm. If we still use At
on the order of 10-5 s, then the magnitude of the coefficient
in the second term of the right-hand side of Eq. 39 can be as

large as 105. The condition for stability of integration using
this FTCS method (Press et al., 1988) is that this coefficient
should be less than 1. Thus we are far from a stable
algorithm if we use Eq. 39 unless we reduce At consider-
ably, which would make the algorithm take an inordinately
long time, or increase Ax to at least a millimeter, which is
spatially too coarse. Instead, we should use an implicit
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method (Press et al., 1988) or perhaps a modified Crank-
Nicholson method.
A straightforward application of standard implicit meth-

ods for partial differential equations is complicated by the
presence of the ionic current density term in Eq. 37. Nev-
ertheless, this term, which is evaluated from the conduc-
tance densities according to Eq. 38, is easily accommodated
as follows. To get the conductance densities, the values of
the membrane potential at each discrete value of x from the
most recent time step are used. Either the discrete analogs of
Eqs. 17 and 28 are used, or the discrete analogs of the
approximation equations, Eqs. 30-34, are used. Either way,
an updated set of discrete ionic current values at each
discrete value of x is obtained. These are subsequently used
in the algorithm's next stage, which is implicit for the
diffusive part alone. This takes the form

V1i(xn, t + At) = Vii(xn t) At Jionic(Vm(Xn t))C

a (40)
+ At

2r CAX2(Vm(Xn+i, t + At)

+ Vm(Xn-, t + At) - 2Vm(Xn, t + At)),

wherein the third term on the right-hand side is evaluated at
t + At rather than at t, and the ionic current density is the
updated version just discussed. Let D be defined by

Ata
D 2= C x (41)

Equation 40 may be transformed into the equivalent
equation

-D(Vm(Xn+i, t + At) + Vm(Xn-, t + At))

+ (1 + 2D)Vm(Xn, t + At) (42)

- Vm(Xn, t)- At C Iionic(Vm(Xn, t)).

This is a tridiagonal system for each time step, and it can be
easily solved by standard methods (Press et al., 1988). This
produces an updated set of discrete values for the membrane
potential, and this two-stage process may be iterated for as
long as one desires. Preliminary work on this problem with
these methods has produced promising results. We have
obtained good agreement with spatially dependent automa-
ton simulations performed independently by Bill Goolsby.

DISCUSSION

In this presentation, earlier work on the numerical simula-
tion of noisy ion channel behavior in neurons has been
expanded and made explicit for applications. The results are
for the Hodgkin-Huxley model and are applicable to any

shown how the number of subunits and the number of types
of subunits in a channel are incorporated into the results in
general. For example (Nossal and Lecar, 1991), the node of
Ranvier of myelinated frog sciatic nerve, a motoneuron, is
modeled by a Hodgkin-Huxley model with n2 and in2h
structure. The present results are easily altered to apply to
this case (see the treatment of sodium above). Other species
of ion channel, such as for Ca (Bertram et al., 1996; Bertram
and Sherman, 1996), could also be easily modeled by using
the present results.

The extension of these results to include spatial depen-
dence has also been presented here for the first time.
Whereas this extension primarily requires a discretization of
the spatial variable and implementation of the spatially
independent algorithm, appropriately modified, to every
discrete spatial location, it also requires some mixing of the
membrane potential at different spatial locations because of
the diffusive coupling in the cable equation. Some care must
be exercised to achieve a stable algorithm. In particular, it is
necessary to use an implicit method for the diffusive cou-
pling. Because we have described this procedure for the
situation that includes noise, it will now be possible to
numerically study a number of problems associated with the
influence of noise on spike propagation and on interspike
statistics.
The two simplifying approximations of the noise algo-

rithm discussed above save time. They amount to two
different ways of introducing stochasticity directly into the
gate parameter equations. Their domain of applicability is
currently determined empirically. A problem for future re-
search is to find analytic criteria for their applicability.
We are also in a position to explore other possible ap-

proximations or reductions of the description. For example,
the Fitzhugh-Nagumo model has recently been used exten-
sively to investigate the importance of stochastic resonance
in neuron function (Longtin, 1993; Collins et al., 1995a,b).
This greatly reduced model is rapidly simulated. How well
it represents the firing dynamics of the full Hodgkin-Huxley
model is not yet known, especially when noise is included.
A number of reduced models other than the FHN model are
known, and their noise properties also must be studied.
Generally, a reduction of a noiseless dynamics does not
automatically imply a corresponding reduction for the noisy
dynamics. For example, the noiseless part of the sodium
dynamics described above at the Langevin level can be
factored into a part for the m subunits and a part for the h
subunit (Chow and White, 1996). However, the noisy part
of this dynamics does not factor.

Clearly, many questions can be approached by using the
stochastic methods presented here. Because the noise pa-
rameters are determined intrinsically and are not put in in an
ad hoc manner, fundamental understanding of the influence
of noise in neuronal dynamics is possible.
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