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ABSTRACT We present a theoretical analysis of intracellular calcium waves propagated by calcium feedback at the inositol

1,4,5-trisphosphate (OP3) receptor. The model includes essential features of calcium excitability, but is still analytically

tractable. Formulas are derived for the wave speed, amplitude, and width. The calculations take into account cytoplasmic Ca
buffering, the punctate nature of the Ca release channels, channel inactivation, and Ca pumping. For relatively fast buffers,
the wave speed is well approximated by VOO = (JeffDef/CO)1'2, where Jeff is an effective, buffered source strength; Deff is the
effective, buffered diffusion constant of Ca; and CO is the Ca threshold for channel activation. It is found that the saturability
and finite on-rate of buffers must be taken into account to accurately derive the wave speed and front width. The time scale
governing Ca wave propagation is Tr, the time for Ca release to reach threshold to activate further release. Because IP3
receptor inactivation is slow on this time scale, channel inactivation does not affect the wave speed. However, inactivation
competes with Ca removal to limit wave height and front length, and for biological parameter ranges, it is inactivation that
determines these parameters. Channel discreteness introduces only small corrections to wave speed relative to a model in
which Ca is released uniformly from the surface of the stores. These calculations successfully predict experimental results
from basic channel and cell parameters and explain the slowing of waves by exogenous buffers.

INTRODUCTION

Planar waves, spiral waves, and oscillations are observed in
a large variety of biological systems (reviewed by Winfree,
1987). These spatiotemporally complex phenomena are
manifestations of the excitable nature of individual cells or
aggregates of cells. One widespread example in eukaryotes
is the initiation and propagation of calcium waves in eggs
and other cells (Berridge, 1993). Calcium waves are trig-
gered by the activation of receptors on the cell surface. This
stimulates the production of inositol-1,4,5-trisphosphate
(IP3), which diffuses through the cytosol and activates in-
ternal 'P3-sensitive receptors (IP3R) that open and allow
Ca21 to be released from an intracellular store, the endo-
plasmic reticulum (ER). The wave is then propagated across
the cell by positive feedback of released cytosolic Ca2+ that
further activates the LP3R (Finch et al., 1991; lino and Endo,
1992; Lechleiter et al., 1991; Wang and Thompson, 1995).

Theoretical investigations of these intracellular calcium
waves have been carried out using continuum reaction-
diffusion models (DeYoung and Keizer, 1992; Sneyd et al.,
1993; Atri et al., 1993; Tang and Othmer, 1994; Wagner and
Keizer, 1994; Jafri and Keizer, 1995). Most studies so far
have attempted to construct models that are as realistic as
possible by fitting the functional structure of the various
building blocks (e.g., channel characteristics, Ca2+ pumps,
and buffer kinetics) to experimental data.
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Given the particular parameters of a biological system,
numerical simulation can yield an exact solution, and these
models give planar, circular, and spiral waves that repro-
duce experimental observations. However, when the details
of the phenomenon are not understood precisely, this can be
an overly restrictive approach. Furthermore, exploration of
a multidimensional parameter space by numerical methods
is impractical.

Analytical methods, on the other hand, produce formulas
that can lead to more physical insights into a problem. Such
insights begin with the identification of appropriate group-
ings of parameters that capture the natural scales of the
phenomenon. Analytical formulas thus obviate the need for
exploration of parameter space. Finally, once calculations
are in hand, they are more easily generalized to accommo-
date new, unforeseen features of the system.

Here we construct a model that is analytically tractable, in
part by discarding some of the fine details found in the more
extended models. We are able then to derive simple formu-
las for the velocity and wavefront length for planar waves.
Our main goal is to identify the factors that play a central
role in determining the main wave characteristics. We con-
centrate on the case in which 1P3 is uniformly elevated in
the cell and the waves are limited by calcium diffusion.
As our starting point, we used a model analogous to the

FitzHugh-Nagumo model, originally used to describe nerve

impulse conduction (for a review see Murray, 1989). Fol-
lowing McKean (1970) and Rinzel and Keller (1973), we

expressed the feedback properties as step functions, in this
case the activation and inactivation properties of the 1P3
receptor as functions of Ca2+. This approximation allows an

analytical solution for wavefront and pulse propagation.
Our work additionally takes into account three previously

neglected aspects of calcium excitability. The first is the fact
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that Ca2+ reacts with endogenous and exogenous buffers at
finite rates. Earlier studies that considered the presence of
buffers either subsumed their effect in an effective diffusion
constant or assumed very fast reaction rates (Wagner and
Keizer, 1994; Sneyd et al., 1995; Jafri and Keizer, 1995).
These assumptions overlook the possibility that calcium
emanating from a channel may be able to stimulate further
calcium release before it has come into binding equilibrium
with buffers-a competition between the time scales of
buffering and channel activation. Experiments with added
exogenous buffers suggest that buffer kinetics do indeed
play an important role in determining the characteristics of
Ca2+ waves (Wang and Thompson, 1995), and among our

goals is establishing a theoretical understanding of these
recent measurements.
A second aspect of calcium excitability previously disre-

garded is the punctate nature, or discreteness of the calcium
channels (see, however, Dupont and Goldbeter, 1994). For
a continuum approach to be justified, the spacing between
channels must be shorter than all other length scales asso-
ciated with the phenomenon, including those that are not
apparent as experimentally measured parameters but are
still intrinsic to the mechanism. This is in fact not the case,
but it will be shown that the required corrections induced by
channel discreteness are small for the parameter ranges
considered here.

Third and finally, we clarify the effect of inactivation on
pulse width and height. We find that in biological ranges of
parameter values, Ca2+ release in a passing wave is termi-
nated by channel inactivation. This sets peak Ca2+ concen-
tration and front length, but not the wave speed, which is
only minimally affected by inactivation.
The main results of this paper may be summarized as

follows. The dimensional combination of parameters that
gives the scale of the propagation speed of calcium waves is
(JeffDeff/CO) /2, where Jeff is the effective free Ca2+ influx
when the channels are activated, Deff is the effective diffu-
sion constant of calcium, and C0 is a concentration scale that
corresponds to the channel activation threshold. This com-
bination has the form (Deff/Tr)12, where Tr = CO/Jeff reflects
the time needed for calcium release to activate further
release (cf. Luther's equation; Luther, 1906; Jaffe, 1991).
The propagation speed is strongly dependent on buffer

concentration and buffer kinetics. The presence of fast buff-
ers significantly slows down the wave, whereas the presence
of slow buffers does not. The fast buffer kinetics regime
applies for KfB >> JoICo, where Kf is the Ca2+ buffer
forward reaction rate, B = [B]total is the total concentration
of buffer sites, and J0 is the total, unbuffered ("bare")
calcium flux through activated channels. Under this condi-
tion, the propagation speed of a planar wave is approxi-
mately given by

1 + Jo
2COKfBy

where

JO D + Db(K -1)
Jeff = - and Deff - K (2)

where D is the diffusion constant of free Ca2+, and Db is
that of the buffers and buffer-bound Ca2 , which we as-
sumed to be equal. The dimensionless quantity K is an
averaged buffer capacity. In the opposite regime of slow
buffer kinetics, the scale of the wave speed is determined
entirely by the bare parameters for free Ca2+:

(0 ) 2Jo KfB)

Relative to a continuum model, wave speed is reduced
when the Ca2+ source is composed of physically discrete
channels. The magnitude of this effect depends on the
dimensionless channel spacing, a, which in turn is a func-
tion of the actual channel spacing, A. For fast buffers,
a = A(Jeff/CODeff)"2, and for slow buffers a = A(JO/COD)"2.
The wave speed is slower than the prediction of a contin-
uum source model by a factor of 1 -O(a3/2). However, for
physiological parameters this effect reduces the speed by
only a few percent.

Because they are slow on the timescale Tr, channel inac-
tivation and pumping activity have only small effects on the
wave speed. However, the channel inactivation time, Tin'
does determine the wave amplitude, Cmax, and the width of
the rising front, W, which are given by

Cmax = JeffTin and W VTin (4)

THE MECHANISM OF Ca2+ EXCITABILITY

Calcium waves start from a resting state in which the
concentration of intracellular Ca2+ is four orders of magni-
tude lower than in the extracellular medium. Calcium re-
lease is triggered when an external agonist binds to a cell-
surface receptor. This reaction stimulates, though a
G-protein, the production of IP3, a water-soluble carbohy-
drate. 1P3 diffuses then though the cytosol, and binds to
receptors embedded in the surface of the ER. The receptor
protein is an 'P3-gated channel that allows the release of
Ca2+ from the ER into the cytoplasm.

IP3R channel opening not only requires 'P3, but also
depends on local Ca2+ concentration (Bezprozvanny et al.,
1991; Finch et al., 1991; Iino and Endo, 1992). Although the
exact mechanism of IP3R gating is not known in detail, the
functional states of the IP3R can be described as closed,
open (conducting), and inactivated. The channel is closed
when the ambient calcium concentration is low, and the
probability of being open increases when the Ca2+ concen-
tration exceeds a certain activation threshold. Activated
channels can then go into an inactivated state. Like activa-
tion, inactivation rates are faster at higher Ca2+ levels.
However, inactivation takes place on a longer time scale
than activation. These strongly nonlinear properties of the
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IP3R constitute a feedback mechanism-positive in the case
of activation, and negative for inactivation.

Another calcium release channel with similar calcium
feedback properties is the ryanodine receptor (Gyorke and
Fill, 1993). Unlike IP3R, these channels only require cal-
cium to open. Our model considers only calcium feedback,
and therefore (with appropriate parameter replacement) can
be applied as well to systems in which ryanodine receptors
provide direct calcium-induced calcium release, without the
formation of 'P3.

After the passage of a calcium wave, the low Ca2+
concentration is restored by means of ion pumps and anti-
porters. Pumps are found both on the plasma membrane and
on the surface of the ER. These pumps and antiporters have
heterogeneous properties, but even for fairly large deflec-
tions from the resting Ca2+ level, the relaxation due to
pumping activity has been observed to fall with a single
exponential decay rate (Tse et al., 1994; but see also Her-
rington et al., 1996).

Calcium is also strongly buffered in the cell. Measure-
ments in cells indicate that buffer-bound calcium is at least
an order of magnitude less mobile than free Ca2+ (Baker
and Crawford, 1972; Neher and Augustine, 1992; Allbritton
et al., 1992); thus the apparent molecular weight of the
buffers is 106 or higher. The identity of these buffers is for
the most part unknown, but they include proteins such as
parvalbumin and calbindin.

These pumping and buffering mechanisms work against a
continual leak of calcium from the internal calcium stores
and from the extracellular fluid. The steady resting state thus
attained has a free Ca2+ level in the range of 10-100 nM.

ANALYSIS OF SIMPLE MODELS OF CALCIUM
WAVE PROPAGATION

In this section we present calculations that identify the
features of calcium wave systems essential to adequately
characterizing calcium excitability. We achieve this by first
constructing a minimal model that incorporates positive
feedback of Ca2+ on the 1P3 receptor and calcium pumping.
We then consider how the results are affected by Ca2+
buffering, channel discreteness, and channel inactivation.

The minimal model: a continuously distributed
Ca2+ source without inactivation or buffers

We consider the propagation of planar waves along the X
axis (Fig. 1). We make the following assumptions: 1) The
Ca2+ source is continuously and uniformly distributed
throughout the cell volume. 2) The IP3 receptor has two
states. The channels are closed if the local Ca2+ concentra-
tion is below a critical threshold, CO, and are activated
instantaneously when the concentration exceeds CO. The
rate of calcium release when the channels are activated is JO.
3) Ca2+ is pumped out from the cytosol at a rate propor-
tional to the concentration, with rate constant F. 4) Buffers

Ca

(cu

V

trrent density Jo )
J J J

1 A I
J \

' c 0

x

opened at
time -T

A
A

opened at
time 2-)T

opened at
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FIGURE 1 Calcium wavefront propagation. The minimum model as-
sumes Ca2' sources that are continuously and uniformly distributed with
source strength per unit length JO. Channels are closed at rest (0), and are
activated (0) when the local Ca2+ concentration rises above the activation
threshold CO (c = 1 in dimensionless units). The wave propagates in the
positive x direction at speed V. In the discrete model, the continuous
calcium source is replaced by channels of strength J, uniformly spaced at
intervals A (a in dimensionless units). Channels open successively at time
intervals T = A/V.

and channel inactivation are ignored. 5) IP3 is elevated to a
level that allows wave propagation.
Under these assumptions, the evolution of the Ca2+ con-

centration field, C(X, i), is governed by the differential
equation

ac a2c
- = D - rc + JOO(C -CO) (5)AT ak2

where D is the diffusion constant of Ca2+ in the cytosol, and
0(C - CO), the Heaviside step function, is 1 for C > CO and
0 for C < CO. In the absence of leakage, the resting con-
centration would be zero. Note that a constant leakage rate,
13, can always be absorbed by defining the concentration
field relative to the resting level, f3/F.
The number of independent parameters can be reduced by

the introduction of dimensionless variables. The choice of
the dimensional units is not unique, and is justified a pos-
teriori if they give the correct scales for the quantities of
interest. We present in Table 1 a set of notations that include
both the dimensional (in capital letters) and dimensionless
(in lowercase) parameters. We will measure the Ca2+ con-
centration in units of CO, time in units of Co/Jo, and length
in units of (CoD/Jo)112.

For uniformly propagating fronts, the concentration pro-
file is stationary in a frame of reference moving at the pulse
speed, v, i.e., it is a function of (x - vt), where v is
expressed in units of (JoD/Co) .2 In the comoving frame of
reference, x = - vt, the profile satisfies the steady-state

-- =b
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TABLE I Summary of notations and units

Notation Definition Value Units Dimensionless form

D Diffusion constant of free Ca2+ 200-300 .m2/s d= 1
Db Diffusion constant of buffers 20 .m2/s db= DbD
Deff Effective Ca-diffusion constant 22 ,m2/s deff Deff/D
JO Ca-current density through channels 2700 ,tM/s jo I

Jeff Effective Ca-current density 27 ,uM/s ieff-Jeff/Jo
C, [Ca2+]free Free-Ca2+ concentration ,uM c-C/CO
CO Channel activation threshold 0.5 PM CO 1
C1 Channel inactivation threshold 0.6 ,uM ca CI/CO
Cmax Ca wave peak amplitude JIM Cmax =Cmax/Co
[CaB] Buffer-bound-Ca concentration ,uM b [CaB]/CO
B, [B]total Total buffer concentration gM
Beq(C) Equilibrium value of [CaB] ,uM beq(c) Beq(C)/Co
K Effective buffer capacity 100
Kf Forward buffering reaction rate (JM s)) kf J(Co/Jo)Kf
Kb Backward buffering reaction rate s kb= (Co/JO)Kb
K Forward buffer binding capacity, Kf [B]total S k (Co/Jo)K
KD Dissociation constant Kf/Kb JIM kD KDICO
T Time s t (Jo/Co)T
Tr Time to threshold, (JeffDeftlCO))2 s

Inactivation time 0.2 s ti,,
r Pumping rate 12-25 s 'y (Co/JO)F
X Longitudinal coordinate gm x (Jo/CoD)"/2X
ACff (CODeff/Jeff) ,um Aeff (Jo/CoD) 2Aeff
A Channel spacing 0.3-0.5 gm a =(Jo/CD)112 A

equation, known as the piecewise-linear model (Rinzel and
Keller, 1973):

d2c dc
d2 + V-X- yc+ 0(c-1) = 0 (6)

where c = C/Co is the dimensionless concentration, and y =
COF/JO is the pumping coefficient expressed in dimension-
less rate units.

Let x = 0 be the boundary between open (x < 0) and
closed (x > 0) channels. At this boundary point, c = 1. Then
the calcium wave profile, c(x), is given by

c(x) = { eq-x x > O (7)

where A1 and A2 are constants to be determined, and

q= 2 [-v ± (V2 + 4,y)112] (8)

Matching conditions at the boundary, c(O-) = c(O+) = 1
and c'(O-) = c'(O+), determine the front velocity:

1 - 2,y
(1 - y)1/2 (9)

The dimensionless pumping coefficient, y, turns out to be a
small number, and has hardly any effect on the dimension-
less wave speed, which is approximately 1. In dimensional
terms, this implies that V (JoD/Co)112.
The width of the wavefront, that is, the characteristic

length over which the concentration rises, is determined by

q+, the exponent with the smaller absolute value:

I Iy (10)

In dimensional units, this implies that W (JoD/Cor2)"/2.
As will be shown below, the estimate for V is drastically

altered by the presence of buffers, but is almost unaffected
by channel inactivation. For fast buffers, an analogous form
for V is obtained with the replacements Jo -> Jeff and D ->
Deff. On the other hand, the form of Eq. 10 for the wave
width does not hold when channel inactivation is taken into
account.

The effect of calcium buffering
In actual physiological systems, cytosolic calcium is
strongly buffered by endogenous buffers; free Ca2+ ions
typically constitute only 1% of the total calcium in the
cytosol. Generally speaking, these buffers are poorly mo-
bile, and they reduce both the amount of free calcium and its
ability to diffuse. This directly affects wave propagation.

Let B denote a free buffer site, and let CaB denote a
buffer-bound Ca2+ ion. The reaction can be written as

Kf

Ca2 +B=CaB
Kb

(1 1)

where Kf and Kb are the forward and backward reaction
rates, respectively. If [B]totai is the total buffer concentra-
tion, then under chemical equilibrium the bound calcium
concentration, [CaB], relates to the free Ca2+ concentration
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by the function Beq:

[CaB] =B (C 2 [Ca2+]free[B]total (12)eq([a2Iftee) KD + [Ca2+]free
where KD = KJKf is the dissociation constant, or affinity.

Experimentally, one frequently measures the differential
buffer capacity K, that is, the total amount of calcium
needed to augment [Ca2+]free by one unit:

KQCa2 (a[Ca]totali aBeq
K([Ca2+]free) = a[Ca2]free - 1 +a[Ca2 (13)a[c2~]ree (13)

KD[B]total

(KD + [Ca2+free)
To account for the presence of buffers, Eq. 5 has to be

replaced by a set of two equations describing the free and
the bound calcium concentrations. In the comoving frame:

d2C dC
D W + V - FC - Kf([B]totl - [CaB])C + Kb[CaB]dX~dX

+J00(C-CO)=0 (14)

We start by considering the linearized case. The assump-
tion of linearity applies if the buffer is not saturated, i.e., if
c <<kD. The buffer capacity then reduces to K Ko = 1 +
[B]total/KD, and the bound calcium equilibrium concentra-
tion to beq(C) = (Ko - I)c.

For infinitely fast reaction rates (k -* oo), the linearized
equations are solvable, and the wave speed is

V~~(°y2, db) = 1 - yvoo(0)(-y,db) = U~~~~~~~~~~(effdeff) (I1 (19)

where

Jef=1 1l+db(KO-l1)Jeff =- and deff = K-
Ko Ko

(20)

In the expansion for speed v, order (1/k)' terms in the series
expansion are denoted by the superscript (i). An expansion
about infinitely fast buffer rates is denoted by the subscript
00, and similarly, the expansion about infinitely slow buff-
ering rates is denoted by the subscript 0.

Converting back to dimensional units,

(15)

d2[CaB] d[CaB]
Db dX2 + V dX + Kf([B]total -[CaB])C

- Kb[CaB] = 0

where Db is the diffusion constant of buffered calcium. In
dimensionless form,

J_ "effDeff 1/2 1-2I y
cVC J (1- y)

where

JO D+Db(Ko-1)
Jeff = - and Deff Ko

K0 K0

d2c dc b
dx2.+ V dJ-yc-k c eq(c + O(C -1) = O

(16)

and

d2b db b
db dx2 + V dX +k beq(c) J=0 (17)

where the dimensionless buffer-bound calcium concentra-
tion is b = [CaB]/CO and has the equilibrium value

beq( ) Co Co kD + C kD
(18)

kD = KDICO is the dimensionless dissociation constant, db =
Db/D is the ratio of the buffered to free calcium diffusion
constants, and k = CoKf[B]tota/JO is the (maximum) forward
buffer binding rate measured in units of the channel char-
acteristic rate, Jo/Co.

Equations 16 and 17 are nonlinear, and there is little hope
of finding an exact solution. It is, however, possible to
derive simple formulas in various limiting cases, and thus to
gain an understanding of the general case. In this section,
we present the results. The detailed calculations are given in

the Appendix.

Therefore, instantaneous buffering just renormalizes the
diffusion constant and the rate of Ca2+ release. The effec-
tive diffusion constant Deff is an average of the diffusion
rates for free and bound calcium, weighted by their relative
equilibrium concentrations. The effective Ca2+ release rate

Jeff is the unbuffered flux multiplied by the fraction 1IKO of
total calcium that is free at equilibrium. The pumping
strength, F, which can be viewed as a negative source, is
renormalized by the same factor as JO, and so the dimen-
sionless parameter y is not changed by the presence of
buffers.

Next we account for fast but finite buffer reaction rates.
We start by considering a system in which buffers are

immobile (db = 0). In this case, asymptotic expansions can

be derived in both limits of fast and slow buffer kinetics. For
fast buffer kinetics, k >> 1, the wave speed is given by the
series

v = v()(y, 0) + v()(y, O)k-' + O(k-2) (23)

where the first two coefficients of the expansion are related
by

(v 0)2 [v (° 0

voo (Y, 0) (24)

(21)

(22)

2434 Biophysical Journal



Calculation of Intracellular Calcium Wave Characteristics

The same quantity, written in dimensional units, is

vP'(r, o) [Vo(, o)] (KO- 1)2
vio(v, 0) D 2

1

(25)

This result can be generalized for the case of mobile
buffers. Rather than undertaking a lengthy calculation, we
suppose that for mobile buffers one has to replace the
effective diffusion constant, which for immobile buffers
equals D/KO, with Deff. The correction factor is the ratio of
these, D/KoDeff, or in dimensionless notation, l/Kodeff. Thus,
for fast mobile buffers, Eqs. 23 and 24 generalize into

where

v(0)(Y d ) + v"')(,y d )k-' + O(k-2)

v=v(,db) y, b )voo (y, db) =2(K0 1)

voo (-, db) - v2(,d)22KOde,ff

a)

a)
a.)

(26)

(27)

In the opposite parameter regime of slow buffer kinetics,
k << 1, and immobile buffers, the wave speed is given by

v v(O)(y, 0) + v(1)('y, O)k + 0(k2) (28)

where

v(°y,0) = (1 - y)I/2 and vUWy, 0) =-2(1 -) 3/2

The first term, vg°)('y, 0), reduces, as expected, to the result
for an unbuffered system.

Note that none of the terms in Eqs. 28 and 29 depend on
the equilibrium buffer capacity, KO. The physical interpre-
tation of this is that for a slow buffer, only forward binding
to buffer (k) determines the buffer's effect on wave propa-
gation, and then only as a first-order correction. Because
only the capture of calcium by buffer affects wave propa-
gation, we also expect buffer diffusion to have little effect in
the slow buffer case. In support of this, numerical calcula-
tions show that Eqs. 28 and 29 hold also for mobile buffers.

Fig. 2 shows the velocity versus the forward buffer bind-
ing capacity for y = 0.05, KO = 101, and db = 0.1. The
dotted line was calculated by solving the linearized version
of Eqs. 16 and 17 numerically (Eqs. 58 and 59 in the
Appendix). The asymptotic approximations (solid lines) are
very accurate, except for the intermediate range of 0.25 '
k ' 0.8. For convenience, an analytical interpolation curve
in this range may also be obtained (Bender and Orszag,
1978) by the use of a Pade approximant (not shown); this
approximation agrees well with the numerical solution. Ar-
rows indicate wave propagation speeds for buffers with on
rates equal to those of 1,2-bis(2-aminophenoxy)ethane-
N,N,N,N-tetraacetic acid (BAPTA) (k = 2) and EGTA (k =
0.02). For these parameter values the buffer will only slow
the wave if it has a fast, BAPTA-like on rate.
We turn now to the case of buffer saturation, when buffer

capacity is a nonlinear function of calcium concentration.
To focus on the nonlinear aspects, we assume that the

0.1

0.001 0.01 0.1 1 10

Buffer on-rate (k)

jv(°)00

100

FIGURE 2 Wave speed as a function of buffer on rate. Both are plotted
in dimensionless units. The dotted line is the exact solution obtained by
numerically solving Eqs. 54 and 55. The solid lines are the two limiting
approximations for fast and slow buffer kinetics. The parameters are y =
0.05, Ko = 101, and db = 0.1. With the assumptions in the text, these are
in dimensional units Feff = 2.5 s-' and Db = 30 tLm2/s, and the range of
on rates shown is 5-5 X 105 s- '. The arrows indicate values corresponding
to 100 ,uM of a buffer with the on rate of BAPTA (108M-s-, right) or
EGTA (106 M-'S-', left).

buffers are immobile and infinitely fast. Starting from Eqs.
16 and 17, the concentration profile, c(x), can be shown to
satisfy the equation

d2c dc
+ K(C)V-d yc + 0(c - 1) = 0 (30)

An exact solution is not possible because of the nonlinearity
of the second term. A numerical approach has been taken by
Wagner and Keizer (1994).

However, an approximate solution to Eq. 30 can be
obtained by the following argument. It was already pointed
out that the wave speed is determined essentially at the
leading edge of the channel activation front. Therefore, it
ought to be possible to replace the nonlinear prefactor, K(C),
by an appropriate average, K, over the region of interest. A
reasonable approximation is to substitute for K(C) its value K
at a concentration, c, near the channel activation threshold,
c = 1. Two possible substitutions for K were tested: the
differential buffer capacity, K(C), and the overall total-to-
free calcium concentration ratio, which is a different quan-
tity when the buffer is saturable.

Comparison with numerical solutions of Eqs. 16 and 17
showed that the substitution of the total-to-free calcium
concentration ratio, that is, K = 1 + beq(j)/W, is a good
approximation, Given this definition, it was furthermore
found empirically that the best fit was obtained using c = 2.

Such averaging might be generalized to also include
buffer diffusion and finite reaction rates. The straightfor-
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ward generalization is to make the same substitution K for
Ko in Eqs. 26 and 27 (for fast buffer kinetics). We tested this
conjecture by examining numerical solutions of Eqs. 16
and 17. The comparison is plotted in Fig. 3 for y = 0.05,
[B]total = 1OOCO, k = 2, 10, and kD spanning the entire
relevant range, between 0.1 and 5. The agreement of this
approximation (curves) with the exact solution (symbols) is
remarkable. This leads us to conclude that linearizing Eq. 30
by substituting K = K(2) in place of K(C) gives accurate
results for wave propagation in a saturating buffer.

In the subsequent sections, in which we treat the effects
of channel discreteness and inactivation, we will consider
the buffers to be unsaturated. Although we do not solve for
the more general case of buffer saturation, it is not unrea-
sonable to assume that the results are likewise generalizable
by the substitution Ko -> K.

The effect of channel discreteness

We next consider whether the discreteness of the calcium
channels has a significant effect on wave propagation. To do
that, we replace the continuously distributed Ca2+ source
model by the discrete model depicted in Fig. 1. In this
model the channels are uniformly spaced in one dimension
with spacing A between adjacent channels. In dimensionless
units, a = A/A, where the length scale is A = (CoD/Jo)12.

To match the continuum limit, the flow through each seg-
ment of length A is then concentrated in the channel, a point
source of strength J = J0 A (and in dimensionless units,
j = a).

Buffers are assumed to be in an equilibrium binding ratio
of 1:(Ko - 1) between free and bound calcium, to be
unsaturated, and have a forward buffer binding rate k. The
front propagates from left to right by means of successive
activation and opening of the channels. Channels open
regularly at time intervals, T, when the concentration attains
the threshold value c = 1. We set the channel at x = 0 to
open at time t = 0. The channels located at x =-an opened
at times t =-rn, whereas the channels at x = am will open
at times t = nm. Under these definitions, the front velocity
is v = alT. The mathematical details that lead to the fol-
lowing results can be found in the Appendix.

In the limit of infinitely fast buffer kinetics and small
channel spacing, we obtain the asymptotic expansion

v = v(Y, db)[l - V312(y)aeff + V2(y)aeff -V512(Y)aeff]

+ O(a'ef), (31)

where aeff = a/Aeff and Aeff = (deff/jeff)1/2. Thus, with
discretely spaced channels, the second term reduces v by a
fraction that is proportional to the 3/2 power of channel
spacing A on the effective length scale, Aeff = (CODeff/
jeff) 12. The coefficient functions are given by

0.12 lll

0.1 (k=2)

r 0.08

> 0.06

0.04

2 3 4 5

Buffer affinity (kD)

FIGURE 3 Wave speed in the presence of a saturable buffer. Wave
speed v is plotted in dimensionless units (unbuffered wave speed is v = 1).
The horizontal axis gives the buffer dissociation constant kD in dimension-
less units from 0.1 to 5; for the assumptions made in the text the dimen-
sional axis range is 0.05-2.5 ,uM. The symbols are the exact numerical
solution for k = 2 (kF = 0.5 X 108 M-'s-') and k = 10 (kF = 2.5 X 108
M- 's- ). The solid curves are the large-k approximations with K replaced
by the total-to-free calcium ratio K(c = 2). Dimensionless parameter values
are -y = 0.05, db = 0.1, and [B]total = 100 CO. These correspond to 50 JIM
of a buffer with mobility Db = 30 jIm2/s and a pump rate of neff = 2.5 s- 1.

(2/X)12
V312(Y) = 12(11- 2 )3/2( -

1
v()=32(1 - -y)(I - 2,y)

and

(32)

(33)

(2/17T)"'(3 - 16^y + 16y2)
V512( Y) = 240(1 -2 7/2(i- )3

The above asymptotic expansion in Eq. 31 has the same
form in both limits of fast and slow buffer kinetics. The
differences are: 1) The velocity scales differ by a factor of
v(°)/v(O), and 2) The channel spacing is scaled in units of Aeff
for fast buffers, rather than A for slow buffers. Because Aeff
is longer in a buffered system than A for an unbuffered
system, this second point implies that the continuum model
is more accurate when fast buffers are present.
The effect of discreteness is less dramatic than was pre-

viously suggested by Wang and Thompson (1995). Fig. 4
shows the wave speed versus the channel spacing for a

buffered system in which 'y = 0.01 and db = 0 over a wide
range of a. A channel spacing as large as SAerf(aeff = 5)
reduces the front velocity by only 20% from the continuum
case. The asymptotic formula Eq. 31 gives an adequate
correction up to a channel spacing ofA lOAeff(aeff 10).

This analysis assumed point sources in one dimension,
which are equivalent to a series of parallel plane sources in
three dimensions. For accuracy, punctate sources in a three-
dimensional lattice might be more appropriate. However,
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FIGURE 4 Wave speed as a function of channel spacing. Wave speed is
plotted as a function of the dimensionless channel spacing a, holding fixed
the amount of calcium release per unit distance. The dotted curve shows the
exact numerical solution, and the solid curve shows the small-a asymptotic
expression. The arrow denotes the channel spacing calculated in the text,
aeff = 0.8 (A = 0.4 ,um). Parameter values are y = 0.01 and db = 0, with
an infinitely fast buffer.

our analysis would still apply to this case, because for such
a diffusion-limited process the difference is only a numer-
ical correction factor of order one.

The effect of channel inactivation

It has been assumed so far that once activated, a channel
remains so indefinitely. However, an important characteris-
tic of the IP3 receptor is inactivation, which causes release
to end and allows the restoration of a low calcium concen-
tration.
To realistically capture this characteristic, a model of the

IP3 receptor must include both inactivation and recovery
from inactivation. Unfortunately, information about these
processes is incomplete. Experiments so far have focused on
inactivation, which takes place in 0.025-0.2 s (Finch and
Goldin, 1993; Parker et al., 1996) and is at the fast end of
this range at higher Ca2+ concentrations (Finch and Goldin,
1993). In the steady state, activation and inactivation com-
bine to give a probability of channel opening that is a
bell-shaped curve (Bezprozvanny et al., 1991). Compared to
inactivation, recovery from inactivation can be very slow.
Reconstituted single channels from cerebellum take tens of
seconds or longer to recover from an inactivating exposure
to Ca2+ (E. Kaftan, personal communication), and in
paired-pulse experiments in oocytes using caged IP3, cal-
cium responses are depressed for seconds (Ilyin and Parker,
1994).

In previous considerations of calcium waves and oscilla-
tions, the degree of channel inactivation has been repre-
sented as a variable that we write here as p(x, t). At p = 0
all channels are available for opening, and at p = 1 they are
fully inactivated. The dynamics ofp are coupled to calcium
concentration; the form of this relationship is quite gener-
ally taken to be

ac a2c
at ax2 - yC +f(c)(1 -p)

ap
tjf at = P + g(c)

(34)

(35)

wheref(c) and g(c) are rates of Ca-dependent activation and
inactivation of the IP3 receptor. In this formulation inacti-
vation and recovery are taken to have the same character-
istic time, ti,

However, this approach may not be adequate because of
the large difference between inactivation and recovery rates.
We have chosen to concentrate on the advancing wavefront,
for which recovery is not relevant. To obtain a simple
model, we take the slowness of the recovery to its extreme
by assuming that after inactivation, channels do not recover
at all.
We assume that the Ca dependence of inactivation, g(c),

is a step function: inactivation is switched on when calcium
rises above a threshold cl = CI/CO. We make a second
simplification: after calcium rises above this threshold, cal-
cium release ends not gradually, but abruptly after time Tin
(in dimensionless units, tin, = (Jo/Co)Ti.). As in previous
sections, the activation curve f(c) is a step function e(c -
1). In this section we will again take buffer kinetics to be
infinitely fast. As explained previously, the net effect of fast
buffering is to renormalize D, J0, and r.

This model can be formulated as a single equation for the
calcium concentration:

ac a2c
a ax2- -yc + 0(c - 1)0[(cl - c(x, t -ti)] (36)

This equation is nonlocal in time (the second step function
introduces a retarded process), but is still piecewise-linear
and thus tractable by simple analysis. The net result is that
the time-shifted inactivation E[(c, - c(x, t - tin)] adds a
region to the concentration profile in which channels are
inactivated (Fig. 5).

For x > 0, the concentration is below the activation
threshold, c ' 1, and the channels are closed. For -1 < x <
0, where 1 is a length to be determined by the calculation,
the channels are activated, and the Ca2+ concentration rises
in time. For x < -1, the channels are inactivated, and the
concentration consequently decays, driven by pumping
activity.
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Substituting in for q+, Eq. 40 becomes

V =1 2effdeff)12'(_
y eq-1)1/2 (41)

Channel activity measurements (Finch and Goldin, 1993)
indicate that the two critical thresholds are very close to
each other, i.e., cl 1, and so I vtin. Therefore, for tjn >>
1, as is typically the case, inactivation introduces only an

-- exponentially small correction in the front velocity com-
pared with Eq. 19.
On the other hand, inactivation strongly affects the con-

centration profile. The amplitude of the wave (at x = -vti,)
is given in the small-y and large-tin limits by

FIGURE 5 Repetitive calcium waves in a model with IP3 receptor inac-
tivation. In the graph calcium waves propagate with speed V in the positive
x direction. The channels are at first closed (open bar, right) and then open

(solid bar, center) when the Ca2+ concentration rises above the activation
threshold CO. When Ca2' rises above the inactivation threshold Cl, the
channels inactivate after a time delay Tj, For biological parameter ranges,

the front length W is limited by inactivation and is approximately VTin. The
point x = -W shows the peak of the wave and marks the boundary
between activated and inactivated channels. For oscillations to occur,

recovery from inactivation (dotted bar, center) must occur slowly enough
for Ca2+ to be pumped below C1. The channels can then be reactivated
(solid bar, left) and a second wave can be generated.

The steady-state profile has the form

c(x) =
1

x< -l

A3eqX -I<x<O

x > O

1

Cmax =z-[1I exp(-K "yt11)] (42)

The parameter Ko "yti (in dimensional terms, FeffTin) de-

termines whether the length of the rising front is dominated
by pumps or by inactivation. Pump-dominated profiles are

obtained when K lYtin >> 1. The wave amplitude in this
case is approximately 1/,y (in dimensional units, JO/F), and
the length of the rising front is given by Eq. 10.

Inactivation-dominated profiles occur for Ko yt1n 1.

The wave amplitude is then cmn, jefftin, and the rising

front length is w 1 vtin. In dimensional units,

Cmax = JeffTin WV VTin (43)

A comment on calcium oscillations
(37)

where

q k20 2' (38
24eff[±L)+ (38)

There are five matching conditions: 1) c(0+) = 1; 2) c(0-) =
1; 3) c'(0+) = c'(0-); 4) c(-l+) = c(-l-); and 5) c'(-l+) =
c'(-l-). An additional constraint follows from the time delay
of inactivation: the inactivation taking place at x = -1 signifies
that the calcium level at this point reached cl at time tin earlier.

In the moving frame, this translates into a spatial constraint, 6)
C(tj0V - I) = C1.

The six constraints yield a set of two equations for the
unknowns v and 1,

q~ ~ ~~q
1- yc1 + + q _ eq+vtn enq+1

q -qq (39)

Calcium oscillations are observed in a variety of cells
(Prentki et al., 1988; Berridge, 1990). The two-variable
model of Eqs. 34 and 35, which considers inactivation and
recovery from inactivation to be symmetrical, can likewise
produce sustained, constant-amplitude oscillations (cf. Atri
et al., 1993). However, according to the considerations
below, these oscillations occur only under conditions that
are biologically implausible. This appears to be generally
true for models that assume that inactivation and recovery
proceed at equal rates.

In the two-variable system of Eqs. 34 and 35, oscillations
are centered around fixed points, c = c* and p = p*, for
which dc/dt = dp/dt = 0. For the oscillations to be sus-

tained, the fixed point must be unstable, so that Ca tran-
sients are not attracted to it. This condition is met when the
real part of the fixed point's characteristic frequencies is
positive.

Analysis of Eqs. 34 and 35 shows that satisfying this
condition requires

1 f'(C*)
- tif (c*)

and

q-1 = log[l - y(l - q-lq+)]

Note that this is a relationship between pump time and the
intrinsic properties of the 1P3 receptor. f'(c*)/f(c*) is the
slope of the Ca activation curve divided by the total acti-
vation at concentration cO. Inspection of measured curves

[Ca 2' 1
Cl

CO
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(Finch et al., 1991) reveals that f'(c*)/f(c*) < 1 at all Ca
concentrations, consistent with a two-site model for activa-
tion. As a result, Ca2+ oscillations require that FeffT,n > 1.
In other words, pumping must be faster than inactivation,
and wavefronts must be pump-dominated.

However, experimental observations of Feff and Tin sug-
gest that wavefronts are inactivation-dominated. The largest
plausible value for this quantity in neuronal cells is FeffTin =
(0.25 s-1)(0.2 s) = 0.05, much too small to support oscilla-
tions. In oocytes, a typical range for this quantity is reffTin =
(1.4 s-')(0.025 - 0.125 s) = 0.03 - 0.17 (see Figures 1 and
5 in Parker et al., 1996). In contrast, at least one numerical
model has this quantity as about 1.3 (Atri et al., 1993, assum-
ing a peak Ca of 3 ,uM). Although this produces oscillations,
such high pump rates are inconsistent with the experimental
observations.
The failure of the two-variable model to produce Ca

oscillations by using biologically accurate parameters sug-
gests that it lacks a crucial component. One possibility is
suggested by the relation between rates in Eq. 44: for
oscillations to occur after a wave peak, pumping must
outstrip the return of IP3 receptors from inactivation. This
could be accomplished in a model by specifying that chan-
nels return slowly from inactivation, or by setting an abso-
lute refractory period during which inactivated IP3 receptors
cannot release Ca2+ at all. Then only the rising phase of the
wave would be dominated by inactivation, and Ca2+ could
return to a low value before release begins again (Fig. 5).
This scenario remains to be substantiated, but it is at least
not a priori inconsistent with observed periods on the order
of several seconds.

COMPARISON TO EXPERIMENTS

We compare our results to measurements of calcium waves
in mouse neuroblastoma cells (Wang and Thompson, 1995),
by calculating parameter values and computing wave pa-
rameters, and then comparing these values to experimental
results.

Parameter values

Based on an average IP3 binding site density of 5.5 ,m3,
an average channel spacing of 0.3-0.5 ,um is obtained
(Wang and Thompson, 1995), depending on whether one or
four IP3-binding sites are assumed per channel. The single-
channel current through IP3 receptor channels has been
estimated to be 0.5 pA (Bezprozvanny et al., 1991). But
even under optimal concentrations of 1P3 and Ca2 , the
open probability is only about 0.2, giving an estimated
average current of 0.1 pA. The maximum release rate is then
approximately J0 2700 ,kM/s.
The Ca2+ thresholds for activation and inactivation of the

IP3 receptor were estimated from kinetic biochemical mea-
surements of calcium release (Finch et al., 1991; Finch and
Goldin, 1993). The rate of calcium release was measured as

a function of calcium concentration, immediately after a
step change in Ca2+, and in the steady state, after all
transients were over. We used the first measurement to infer
the activation characteristics. We used the second measure-
ment to estimate inactivation characteristics, by normalizing
the steady-state calcium release rate relative to its value
immediately after the step change.
The activation range, defined as the concentration range

of free Ca2+ for which the current is between 20% and 80%
of its maximum value, lies between 0.15 ,uM and 1.4 ,AM.
Similarly, the inactivation range lies between 0.3 ,uM and
2.4 ,uM. Because the Ca2+ dependence of these processes is
graded, we used as thresholds the concentrations of calcium
at which these processes are half-maximum. This gives
CO 0.5 ,uM for the activation threshold, and C1 0.6 ,uM
for the inactivation threshold.

Interpretation of the experimental data is complicated by
overlap between the time course and Ca2+ dependence of
activation and inactivation, and by the limited time resolu-
tion of the data (fastest sampling rate of 17 ms). These
limitations cause inactivation to partially mask activation,
and the activation threshold may be even higher than
inferred.

Despite the fact that inactivation may occur at lower
concentrations than activation, calcium excitability can still
occur because activation occurs more quickly. The activa-
tion time is faster than the sampling rate and is therefore less
than 17 ms. The inactivation time, on the other hand, was
found to be slower, -0.1-0.2 s (Finch and Goldin, 1993;
E.A. Finch and J. Sneyd, personal communication).

Using the above unbuffered estimates for J0 and C0, the
time to reach threshold is

-= 0.2 ms
Jo (45)

and the characteristic channel rate is Jo/Co = 5 X 103 s-1.
Using this as the time scale and taking Tin = 0.2 s, the
dimensionless 1P3 receptor inactivation time is tin = 103.

Experiments show that free Ca21 is removed from the
cytosol within 4-8 s (Tse et al., 1994; Wang and Thomp-
son, unpublished observations), giving reff = 0.12-0.25
s- l. This rate is affected by the presence of fast endogenous
buffers, which typically bind 99% of the cytosolic calcium.
Because only free Ca2+ ions are available to be pumped, the
bare pumping rate in the absence of buffers is therefore
higher by a factor of 102, and F = 12-25 s- . The corre-
sponding dimensionless pumping rate is

y = 2.4-5.0 x i0-3 (46)

The concentration of endogenous buffers in the cytosol
has been estimated to be [B]ttal- 100 ,uM (Wang and
Thompson, 1995), and the equilibrium total-to-free Ca2+
ratio is R = 100. This would make Jeff 27 ,M/s, consis-
tent with the observation of Ca2+ release rates in oocytes of
10-150 ,tM/s (Parker et al., 1996). The buffer reaction on
rate is closer to that of BAPTA than that of EGTA (Neher
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and Augustine, 1992), and we take it to be Kf = 108 (M
s)-l. This corresponds to a dimensionless forward buffer
binding capacity of k = 2. The diffusion constants of free
and bound calcium are approximately D = 200-300 ,umm2
s-1 and Db = 20 ,um2 s-1. This latter number was chosen
to reflect experimental conditions in which both the nearly
immobile endogenous buffers (Allbritton et al., 1992; Neher
and Augustine, 1992) and the mobile indicator dye, fura-2
(Baylor and Hollingworth, 1988), are present.

The effective parameters are, consequently, Deff = 22 /im2
s-1 and JefCo = 50 s-1. The characteristic length scale
associated with the wave is then Aeff (CoDedlJeff)'2 = 0.5
,im, resulting in a dimensionless channel spacing of aeff = 0.8.
For this spacing, wave speed is not significantly altered from
the continuum case (Fig. 4).

Note the continual distinction between "bare" and "effec-
tive" parameters. It is important in the present context; in a

given calculation, one must use either the bare or the effec-
tive parameters, not a mixture of the two.

Comparison to experiments

Combining the various parameters, we obtain the following
estimate for the wave speed. To leading order, the velocity
is given by the basic formula for V(). The correction due to
finite buffer kinetics may be inferred from Fig. 2. For k =

2, the velocity is -5% larger than its value in the case of
infinitely fast buffer kinetics (k = c°). In addition, we expect
discreteness to reduce the wave speed by, at most, 2%. The
effects of pumping and inactivation on the wave speed are

negligible. As a result,

/JeffDeff\ 1/2

V = 1.05 X 0.98( e ) = 35 ,um/s (47)

This estimate matches the range of V = 43 + 28 ,um s-
(mean ± SD) measured by Wang and Thompson.

Note that in the present case, the corrections to V() are

small. However, a moderate change in the buffer kinetic
parameters, as can be expected among systems and even

from cell to cell, will in general lead to a significant effect
on wave characteristics. For example, reducing k from 2 to
1 would lead to a 30% increase in the wave speed. In fact,
variation in k and in the density of IP3-bound receptors (and
therefore JO) could easily account for the observed distribu-
tion of wave speeds.

This strong dependence of wave speed on buffering sug-

gests that adding exogenous buffers will reduce the wave

seed. In principle, the inclusion of various types of buffers
requires a separate analysis, because of the existence of new
time scales. Two cases are nevertheless easily treated.

In the first case, two buffers have the same mobility Db,
and the same on rate Kf. Then, one can simply define an

effective buffer capacity, given by

1 1 1
Keff-lK1l- K2-l

(48)

where K1 and K2 are the individual buffer capacities.
This case corresponds to the experiment of adding

BAPTA-type chelators, the on rates of which are on the
order of those of the fast endogenous buffers. The amount of
added buffer was estimated through an "attenuation factor"
(Wang and Thompson, 1995; see Neher and Augustine,
1992), which is roughly the ratio of the buffer capacity
before (Kj) and after (Keff) the loading of the exogenous

buffers.
Equation 20 predicts that wave speed should be reduced

approximately by the factor (Keff/K1)112. Averaged over all
buffers tested, the wave speed was found to decrease by
27% (Wang and Thompson, 1995). Such a decrease in the
velocity would result from a doubling in the effective buffer
capacity, an estimate that seems reasonable.

Because a number of different buffers of the BAPTA
family were tested, it was possible to test the prediction by
matching the changes in wave speed to the amount of
change in buffer capacity. The comparison is complicated
by the fact that the attenuation factor measures the differ-
ential buffer capacity, whereas it is the integral capacity that
was found to be important in the determination of the wave
speed. For buffers with low KD, this distinction is signifi-
cant, and we corrected for this.
The comparison between the measurement and the pre-

diction is shown in Table 2. A good agreement was obtained
for the 5,5'-Br2-BAPTA/AM buffer. This buffer has a rel-
atively large dissociation constant KD. For 5,5'-dimethyl-
BAPTA/AM, which has a small KD, the prediction is within
the experimental error bar. For the case of fura-2/AM, the
difference between measurement and prediction is large.
The reason for this discrepancy is unknown. It could be
accounted for if fura-2 were more mobile than the other
buffers and therefore less able to slow down the wave.

TABLE 2 Comparison between measured and predicted change in wave speed as a result of adding various types of fast and
slow exogenous buffers

Change in v Change in v
Chelator KD (nM) Attenuation factor (measurement) (prediction)

5,5'-Dimethyl-BAPTA/AM 150 0.20 ± 0.04 -31 ± 22% -55%
Fura-2/AM 170 0.35 ± 0.04 -16 ± 8% -41%
5,5'-Br2-BAPTA/AM 1570 0.69 ± 0.03 -21 ± 13% -17%
EGTA/AM (slow buffer) 70 0.16 ± 0.03 +4 ± 12% -1%

Data from Wang and Thompson (1995).
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However, because the experimental error bars are large, a
more accurate quantitative test of the theory awaits further
experiments.
The second case applies to the experiment of adding

EGTA, the on rate of which is much slower than that of the
endogenous buffer. When the two on rates are very distinct,
the fast ones can be accounted for first, thus obtaining
renormalized parameters. The slow ones can then be treated
as perturbations. The amount of added EGTA was estimated
in the same way as BAPTA-type chelators.
The on rate of EGTA is about 106 (M s)- 1, which

corresponds to k = O(10-2). For such low buffering rates,
the velocity is approximated by

v = ( --- k) (49)

where the effective parameters, Jeff and Deff, refer to the
effect of the fast endogenous buffers. Hence EGTA is
expected to slow down the wave by about 1%, which
matches the observed result to within experimental error
(Table 2).

Next we turn to evaluate the pulse amplitude and width.
Because cl 1, we can use Eq. 38. The product K1 'yti.
determines whether the pulse shape is dominated by inac-
tivation or by the pumps. For the above data, we find that
K lytin = 0.04. Hence the pulse shape will be mainly
determined by inactivation, with height

Cmax = 5.4 ,uM (50)

The wave amplitude as estimated from the experiments is
typically below 3 ,uM. The discrepancy may lie partly in the
fact that dyes commonly used for Ca2+ detection saturate at
these high concentrations. The width of the rising front is
given by

W= VTin= 7 ,m (51)

The wave width was measured to be W = 13.3 ± 5.5 ,um
(mean ± SD), which matches this calculation.

DISCUSSION

The analysis presented in this paper provides simple rela-
tions between the main calcium wave characteristics and the
underlying microscopic parameters. These calculations ap-
ply to systems in which the positive feedback necessary to
sustain wave propagation is provided by calcium-induced
calcium-release (CICR) at the IP3R. The propagation speed
is then determined by a combination of the effective cal-
cium diffusion constant Deff, and the time scale of the
feedback loop, which is inversely proportional to the effec-
tive release rate Jeff.

Here "effective" refers to the values of quantities as
modified by buffers, in contrast to "bare" or unbuffered
quantities. For example, the release rate in the absence of
buffers Jo is replaced by an effective value Jeff = JJKR
where K is the buffer capacity. Because K is large in cells,

buffers therefore have a significant impact on effective
properties.
The effects of buffers are describable entirely in terms of

parameter renormalization only if the buffers are infinitely
fast. Finite kinetics introduce subleading corrections, which
depend on the ratio of the binding reaction rate and the rate
of the CICR feedback loop. These corrections are generally
significant. For linear, or nonsaturated buffers, we obtained
analytical formulas for the limits of fast and slow buffer
kinetics.
The influence of buffers increases with buffer concentra-

tion, but this effect is suppressed by buffer saturation. For
saturable buffers, these analytical formulas are still reason-
ably accurate, provided that the Ca2+-dependent buffer ca-
pacity is replaced by an appropriate average value. The
concentration profile of a wave, whether the cell responds
by a single wave or generates a repetitive train, is divided
into two qualitatively distinct regions: a rising front fol-
lowed by a decaying tail. The length of the rising front is
governed by the receptor inactivation time Ti. This is the
duration of calcium release, and it therefore determines both
the pulse amplitude and the rising front length. During the
decaying part, a low-calcium state must be restored before
the receptors may be activated again, and this is therefore
governed by pumping activity.

All of the corrections that we have considered may be
summarized by the following cumulated expression for
wavefront velocity:

V JeffDeff 1/2 +3 r 1 Jo/Co
coCO/ 2 Jo/ICo 2 Kf[B]total

(52)
(2/T)1/2- A

12 [(CODeff/Jeff) "/2

The variable terms within the curly brackets are, respec-
tively, first-order corrections arising from pumping, fast
buffers, channel discreteness, and channel inactivation. The
numerical coefficients to these corrections (i.e., (2/X)1/2/12)
are model dependent. However, the parameter groupings are
model independent and reveal the appropriate scales for
these biological phenomena when considering calcium
wave generation.
Our analytical result for wave speed parallels earlier

theories. The expression for the speed of a wave propagated
by an autocatalytic reaction together with diffusion, V -

(DeffTr)"2, goes back to Luther (Luther, 1906; Jaffe, 1991),
where Tr is a characteristic time for calcium rise to close the
feedback loop. For the particular case of propagation by
calcium-induced calcium release, our calculation for V() is
made equivalent to this expression by taking Tr = Jeff/CO.
An alternative theory for Ca wave propagation was pro-

posed by Meyer (1991). Meyer proposed a simple expres-
sion for the rising front length, W = (DTr)112. Combined
with Luther's equation, it gives the relation W V = D.
Sneyd and Kalachev have pointed out that this expression is
wrong because buffering is not taken into account, and they
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propose a relation for systems with infinitely fast buffers
(Sneyd and Kalachev, 1994; Sneyd et al., 1995). Here we
have shown that another problem with Meyer's expression
is that it does not take channel inactivation into account. All
of these relations rely on the assumption that the CICR
feedback time scale Tr is equal to the total duration of
calcium release, which is in general not true. The duration
of calcium release is in fact longer and is limited by the
inactivation time.
To summarize, the correct expressions are

V Deff
1/2

( Tr )5/2
Deff (53)

Dee) 1/2 (54)

(Tr)
W V ~(7Deff (55)

The length-speed product, W V, has been measured by
Wang and Thompson (1995). Their interpretation of this
quantity, in terms of previous theory, as a diffusion constant
is not correct, for the reasons we have discussed. The
correct interpretation is that the length-speed product ex-
presses a relationship between calcium diffusion and IP3R
flux, activation, and inactivation parameters. Given our
assumption for Deff, the observation by Wang and Thomp-
son that W V 400 gum2/s then implies that the positive
feedback loop is about 20 times faster than IP3 receptor
inactivation, a conclusion well in agreement with observed
properties of the IP3 receptor.
Our analysis of calcium wave propagation has correctly

predicted a number of experimental results: fundamental
wave parameters, and the slowing of waves by fast buffers
but not slow ones. However, the strength of our approach
remains to be more rigorously tested both experimentally
and theoretically.
A central future experimental test is the full exploration

of the effects of buffer loading on waves. We have predicted
that when fast buffers are added to the cytoplasm, wave
speed will be inversely proportional to the square root of the
total buffer strength; results so far confirm this prediction.
However, more detailed quantitative measurements are
needed, not only of wave slowing by buffers, but of all the
fundamental parameters-calcium pumping, IP3 metabo-
lism, and IP3 receptor density and kinetics-in a single
biological preparation. This has not yet been done.
We note two outstanding theoretical problems that re-

main: how waves are initiated, and why receptor stimulation
leads to a single wave in some cells, and to an oscillatory
sequence of waves in others.
One key to understanding wave initiation is the observa-

tion that calcium release is delayed by several seconds after
cell stimulation (Prentki et al., 1988; Wang et al., 1995).
Because during this delay period IP3 concentration may still
be rising toward a plateau, it is possible that the delay is

caused by the time required for IP3 to reach a threshold
concentration that supports initiation and propagation of a
calcium wave (Wang et al., 1995).

This IP3 threshold can be explained within the framework
of our discrete model. When IP3 is low, the effective chan-
nel spacing is increased and the effective current density
decreased. The question is then whether there exists a
threshold density of channels below which waves cannot
propagate. An absolute minimum criterion is that at large
channel spacing, release must continue for a long enough
time to activate the neighboring channels before channel
inactivation takes place. Under this constraint, the fraction
of 'P3-bound receptors p must satisfy the inequality

CO
PJ.reff <Tin (56)

For the parameter values we have used, this gives a mini-
mum value for p of 0.1. This corresponds to either 10%
saturation of receptors, or to complete saturation of IP3R
spaced at an average distance of 0.7-1.0 ,tm. The delay to
calcium wave initiation would then be explained by a rise in
IP3 until activated receptors are closer than this critical
distance. Then spontaneous opening of a channel would be
the trigger for Ca2+ release. This mechanism could explain
the strongly nonlinear nature of the IP3 dose-response rela-
tionship (Parker and Ivorra, 1993; Parker et al., 1996).
The characterization of repetitive wave trains, and nota-

bly the condition that determines whether a cell generates a
single pulse or a periodic wave, is beyond the scope of this
paper. Here we have shown that even establishing such
conditions for a uniformly oscillating cell requires a better
understanding of how channels and stores recover from
inactivation.

Periodic wave phenomena add a theoretical challenge:
these wave characteristics do not simply follow from the
microscopic parameters by dimensional arguments. In re-
petitive waves, the nonlinearity of the activation and inac-
tivation curves plays a subtle role. Typically, reaction-
diffusion equations for an excitable medium do not even
determine a unique wave frequency, but rather give rise to
a continuous family of allowed solutions (Rinzel and Keller,
1973). A full explanation of these complex phenomena will
require experimental resolution of and theoretical account-
ing for detailed biological mechanisms.

APPENDIX

The effect of unsaturated buffers

For unsaturated buffers, the buffer capacity is constant, and equals the
total-to-free calcium concentration ratio:

beq(c)
K0 = 1 + (57)

C
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Equations 16 and 17 reduce, then, to the piecewise-linear form,

d2c dc / b\
+ --yc-klc-l+O(c-1) =0dx2+ Vdx K Ko-1+=

(58)

and

d2b db b
dbd +V dx+k c o-10dxKx-

The large-k limit is treated by expanding b(x) in 1/k about its equilibrium
value,

b(x) = (Ko -1)c(x) + q(x)k-' + O(k-2)

the set of equations

at = a2GC - kGk(Gc+-_b + a(x)O(t)
at aX2 -yC\ K1J-

aGb a2Gb Gk__b_)
at dKx2+k o~K- I

(67)

(68)

(59) The solution can be found in momentum space using the Fourier-cosine
transform,

~~~~G,C(x,t) =- dq cos(qx)Gc(q, t)IT(60)

which, substituted into Eq. 59, gives to leading order

(Ko- 1)71(x) = db(Ko - I)c"(x) + V(Ko- 1)c'(x) (61)
Substituting this back into Eq. 58, we obtain a single equation for the free
Ca concentration,

(69)

with a similar definition for Gb(q, t). The solution for G,(q, t) reads

a a s-q~s+(q)tGc(q, t) = ~ ~+ Ii + eq2r(q) 2[s+(q) - s-(q)][\ r(q))

( r(q) )
d2c dc

e2ffd 2+ KoVdX -yc + (c - 1) = 0

where A 2 = 1 + db(Ko- 1). Equation 62 is completely analogous to Eq.
6 up to different coefficients, which can be adjusted by resealing the
coordinates. The resulting velocity is given by Eq. 19.

The finite-k cases can be solved for immobile buffers (db = 0). The
general solution of Eqs. 58 and 59 is

+ A1eq,x + A2eq2 x < 0
c(x) =j x'Y

A3eqlx>0

(63)

where s+(q) are the two roots of the quadratic equation

Ko0k
k2

q2+ y

2+ 2 + y ef+s + (I + db)q + Y+ Ko ]S + - -k
K0 1_ K(71)

+ dbq2(q2 + y) = 0 (71)

and

db(Ko-)
+ db(KA 1)q kG' (72)

and

Ko 1+
I

q, + B2eI x < 0b(x) 'Y
-+Be +B2e ~~~(64)

B3eq3 X > 0

where q,,2,3 are, respectively, the two positive roots and the one negative
roots of the cubic equation,

+(V-K Ko Ko-
(65)

There are now four matching conditions at x = 0, the additional one being
c"(0+) - c"(0-) = 1. By straightforward manipulations, one finally obtains
the following implicit equation for the front velocity:

q3(2q3V + K-)+ K k q3V = 0 (66)

The asymptotic expansions for k << 1 and k >> 1 are obtained by
expanding q and v in powers of k and k- 1, respectively, substituting into
Eqs. 65 and 66, and equating term by term.

The effect of channel discreteness
Let Gc(x, t) denote the concentration of [Ca2+]fre, at point x and time t
contributed from a channel placed at the origin and that opened at time t =

0. Gb(x, t) is the corresponding bound calcium concentration. Both satisfy

As there are an infinite number of open channels along the negative x axis,
the concentration at the origin is the sum over functions G,(x, t), due to
sources located at distances na away, and which opened in the past at times
t = -nT = -na/v, with n = 1, 2,.... Then the condition that the
concentration at the origin at time t = 0 equals the activation threshold,

c(O, 0) = E G,(x = na, t = nT) = 1,
n=l

(73)

determines the wave speed as a function of y, k, Ko, and a.

The problem is significantly simplified in the limit of fast buffer
kinetics. To leading order, s-(q) = -KOkI(KO- 1) and s+(q) = -(Aq2fW +

-y)/Ko. In this case, Eq. 70 reduces to

aC(q[) = 2(A22 + e Aeffq2 + yt])
G.(q, t) = 2(4k2fq2 + -'I{ ex (74)

for which the inverse transform is

G( ) ~~~a I/1/2j ( Al1/2 1/2),(x, t) = -4 [,
eY rf

1/2
/2

-CYl xerfc( X t l/2^y1/2)]

(Oberhettinge, 1957), where x = x/Aeff, and t = t/Ko.

(75)

(62)
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To proceed, we have to calculate infinite series of the form

00

I = E ePanerfc[(ouan)l/2] (76)
n=1

where p and o- are arbitrary parameters. For small values of a, these series
can be approximated by an integral

1 0h 1 1 O'1/2 1
I-I dxe(P/xerfc(xl/2) -- + 2o,a pa pa (p -u()" 2

oa2

21/2 1 21/2
+ 3 --n(oa)'12-- pa + 30o /2(3P -)r 12a3/2

+ O(a2) (77)

Substitution of Eq. 75 into Eq. 73, and use of the asymptotic expansion 77,
gives for the front velocity

21 123/2

v~1(y, - 121 (2/'7r)"aeffV(0)(y/, db) I [ 32)2(1-

2aeff (78)
+ 32(1 - y)(I - 2-y)

(27r)12(3- 16'y + 16y2)a15/2

240(1 - 2'y)712(1-t)3/4J + 0(aeff)
with aeff = a/Aeff.

RK thanks David Kessler for helpful advice. Beth Finch, Ed Kaftan, and
James Sneyd made results available before publication, and an anonymous
reviewer made a number of valuable comments.

Noted added in proof. E. Oancea and T. Meyer (1996) have directly
measured recovery from 'P3 receptor inactivation and found that its time
course in RBL cells roughly matches the interval between Ca spikes, in
consistency with our prediction (J. Biol. Chem. 271:17253-17260).
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