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ABSTRACT
Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and 
outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with 
respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low 
prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an 
epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 
880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and 
phylogenetic analyses characterized the novel HCoV and closely related CoVs harboured by Apodemus spp. On 15 
December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed 
with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient 
liver dysfunction on the fourth day of hospitalization. Metagenomic NGS (mNGS) identified a novel HCoV in nasal 
swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was 
closely related to alphacoronaviruses carried by Apodemus spp. in the ROK and China. This case highlights the 
potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, 
such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be 
attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological 
prevalence, and zoonotic origins.
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Introduction

The Coronaviridae family comprises enveloped, posi-
tive-sense, single-stranded RNA viruses [1]. Corona-
viruses (CoVs) infect a wide range of hosts, 
including humans and animals, posing a significant 
threat to public health. A notable recent human CoV 
(HCoV) infection is the CoV disease 2019 (COVID- 
19) pandemic, caused by severe acute respiratory syn-
drome CoV 2 (SARS-CoV-2) [2]. This virus presents a 
wide spectrum of clinical manifestations and out-
comes, resulting in major disruptions of historical 
proportions in politics, economics, and healthcare [3].

In addition to causing global outbreaks, HCoVs are 
frequently endemic in patients with respiratory infec-
tions [4]. Seven CoVs from two distinct genera are 
recognized to infect humans. Common HCoV strains 
include 229E and NL63 from the genus Alphacorona-
virus (α-CoV) and OC43 and HKU1 from the genus 
Betacoronavirus [5]. These strains primarily lead to 
seasonal outbreaks of upper respiratory tract infec-
tions, typically presenting with mild symptoms. In 
contrast, three other CoVs (severe acute respiratory 
syndrome CoV, Middle East respiratory syndrome 
CoV, and SARS-CoV-2), which have emerged through 
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recent zoonotic transmission, are associated with lower 
respiratory tract disease, including acute respiratory 
distress syndrome [6–8]. In paediatric populations, 
the clinical spectrum of HCoV infections includes 
fever, upper respiratory disease, croup, asthma exacer-
bation, acute gastroenteritis, and febrile seizures [9].

Co-infection of HCoV with other respiratory 
viruses, such as human parainfluenza viruses (HPIV) 
1–3, rhinoviruses, influenza A and B viruses, human 
adenoviruses, and human metapneumoviruses, has 
been observed in clinical settings [5,10]. Recently, a 
novel HCoV, belonging to canine CoV (CCoV), was 
isolated from a patient with pneumonia who was co- 
infected with a rhinovirus in Malaysia (CCoV- 
HuPn-2018) [11]. A novel recombinant CCoV strain 
was also identified and isolated from a patient with a 
travel history from Haiti who exhibited fever (HuC-
CoV Z19Haiti), supporting the zoonotic transmission 
[12]. Additionally, partial sequences of feline-like 
CoVs have been retrospectively detected in patients 
with influenza-like illnesses in the USA [13].

Rodents, as natural reservoirs of viral diversity, are 
crucial to the emergence of zoonotic pathogens 
[14,15]. Within the genus α-CoV, two notable 
rodent-derived strains, AcCoV-JC34 and Lucheng- 
19, exemplify the evolutionary complexity and genetic 
diversity of these viruses. AcCoV-JC34, identified in 
Apodemus chevrieri (Chevrier’s field mouse) in Yun-
nan, China, is classified within the subgenus Lucha-
covirus [16]. This strain is particularly distinguished 
by the presence of a putative furin cleavage site in its 
spike (S) protein, a feature not commonly observed 
in other Luchacovirus members [17]. Meanwhile, 
Lucheng-19, discovered in Rattus norvegicus (Brown 
rat) in Lucheng, China, represents a unique lineage 
within α-CoV and is believed to have arisen through 
recombination events [18]. These findings underscore 
the rich genetic diversity of rodent-borne α-CoVs, high-
lighting the need for sustained surveillance to better 
understand their potential to emerge as zoonotic threats.

Here, we report the first case of pneumonia with 
concurrent temporary abnormal liver function in an 
infant co-infected with a novel HCoV, HPIV-1, and 
rhinovirus. The α-CoV carried by Apodemus spp., clo-
sely related to this novel HCoV, was identified and 
characterized through retrospective rodent surveil-
lance conducted in the Republic of Korea (ROK) 
from 2018 to 2022.

Materials and methods

Ethics statement

Human specimens were collected with an exemption 
of consent (K2023-0634-1) from the Institutional 
Review Board of Korea University Medical Center 
(KUMC), Ansan, ROK. Wildlife was handled per the 

ethical guidelines (#2016–49, 2019–4, 2019–171, 
2021–75, and 2022–34) of the Korea University Insti-
tutional Animal Care and Use Committee, Korea Uni-
versity, Seoul, ROK. The small mammals were 
transported to an animal biosafety level 3 facility at 
Korea University, where they were euthanised by car-
diac puncture under alfaxalone-xylazine anaesthesia.

Patient specimen collection and 
epidemiological survey

Nasal swabs and serum samples were collected from a 
paediatric patient at the Korea University Ansan Hospi-
tal, Ansan, ROK. An epidemiological interview was con-
ducted with the patient’s parents. The epidemiological 
questionnaire included personal information, dates of 
symptom onset and hospitalization, diagnosis, clinical 
symptoms, field activities, exposure history to domestic 
or wild animals, travel history before infection, and vac-
cination history. Medical staff reviewed the charts.

Metagenomic next-generation sequencing 
(mNGS)

mNGS was performed on nasal swabs and serum 
specimens from a patient using an in-house modified 
sequence-independent single-primer amplification 
(SISPA) method. Viral RNA was extracted using the 
QIAamp Viral RNA Mini Kit (Qiagen, Hilden, 
Germany) following the manufacturer’s instructions. 
Host rRNA depletion was conducted to remove total 
rRNA using a NEBNext rRNA Depletion Kit 
(Human/Mouse/Rat) V2 (New England Biolabs, Ips-
wich, MA, UK). First-strand cDNA was synthesized 
from isolated RNA using the SuperScript™ IV First- 
Strand Synthesis System (Invitrogen) with FR26RV- 
N (5′-GCC GGA GCT CTG CAG ATA TCN NNN 
NN-3′). Double-stranded (ds) cDNA was generated 
using 5 units of Klenow 3′ → 5′ exo DNA polymerase 
(Enzynomics, Daejeon, ROK), 0.5 μL of dNTP mix-
tures (each 0.5 mM), and 1 μL of RNaseH (Invitro-
gen). The ds cDNA was purified using Agencourt 
AMPure XP beads (Beckman Coulter, CA, USA). Pur-
ified cDNA was enriched by random fragment 
amplification using MyTaq Red mix (Bioline, Taun-
ton, MA, USA) and the FR20RV (5′-GCC GGA 
GCT CTG CAG ATA TC-3′). The first and second 
cycling conditions were: initial denaturation was at 
98°C for 30 s, followed by 38 or 25 cycles of denatura-
tion at 98°C for 10 s annealing at 54°C for 20 s, and 
elongation at 72°C for 45 s. Polymerase chain reaction 
(PCR) products were purified using Agencourt 
AMPure XP beads (Beckman Coulter). Amplicons 
were prepared using a Ligation Sequencing Kit 
(SQK-LSK109) according to the manufacturer’s pro-
tocol (Oxford Nanopore Technologies, London, 
UK). Each library was sequenced using a singleplex 
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assay on an MK1C system (ONT) with an R9 flow cell 
without cross-contamination.

Retrospective rodent surveillance

The rodents were provided by the Hantavirus Surveil-
lance Project of Korea University, Seoul, ROK [19– 
22]. Rodent trapping and taxonomic classification 
procedures have been described previously [23]. 
CoV infection was confirmed using in-house 
reverse-transcription PCR (RT–PCR). Total RNA 
was extracted from rodent faecal specimens using 
TRI Reagent LS Solution (Invitrogen, Waltham, MA, 
USA) following the manufacturer’s instructions. 
Reverse transcription was performed from 1 µg of 
total RNA with the High Capacity RNA-to-cDNA 
kit (Applied Biosystems, Foster City, CA, USA). 
Nested RT–PCR was conducted in a 25 μL reaction 
mixture containing 0.625 U of Ex Taq DNA polymer-
ase (TaKaRa BIO, Shiga, Japan), 2.5 μL of 10 X Ex Taq 
buffer, 2 μL of dNTP mixture (each 2 mM), 1 μL of 
forward and reverse direction primers (final concen-
tration: each 0.4 μM), and 1.5 μL of cDNA template. 
The cycling condition included an initial denaturation 
at 94°C for 5 min, followed by 6 cycles of denaturation 
at 94°C for 30 s, annealing at 37°C for 40 s, and 
elongation at 72°C for 1 min; and then by 32 cycles 
of denaturation at 94°C for 30 s, annealing at 42°C 
for 40 s, and elongation at 72°C for 1 min; with a 
final extension at 72°C for 5 min (ProFlex PCR Sys-
tem, Life Technology, CA, USA). CoV-specific primer 
sequences were CoV-R-2F (outer): 5’-GGC ACT GTT 
GTA TCA AAT GCC ATG-3’, CoV-R-2R (outer): 5’- 
CAG CAG TAA CAG CCA CAG CCA C-3’, CoV-R- 
2NF (inner): 5’-GCT TAA GTG TGT GGC GCT 
CTG-3’and CoV-R-2R (inner): 5’-CAG CAG TAA 
CAG CCA CAG CCA C-3’ for RNA-dependent 
RNA polymerase (RdRp) gene; CoV-S-2F (outer): 5’- 
GGT GGC ATA GGG CCA CTC AAG-3’, CoV-S- 
2R (outer): 5’-CCT ACG CAG ACC ATA ATT 
GCC-3’, CoV-S-2NF (inner): 5’-CAA CAG CCT 
GCT GTT GAT GTG C-3’, CoV-S-2R (inner): 5’- 
CCT ACG CAG ACC ATA ATT GCC-3’ for S gene.

Quantitative PCR (qPCR)

qPCR was conducted using the TaqMan Multiplex 
Master Mix (Applied Biosystems) on a QuantStudio 
5 Flex Real-Time PCR System (Applied Biosystems). 
25 μL of reaction mixture included 10 μL of TaqMan 
PCR Multiplex Master Mix (Applied Biosystems), 2 
μL of cDNA template, 1 µL of TaqMan probe (10 
nM), 0.5 µL of forward and reverse primers (each 36 
nM), and 6 μL of Distilled water (D.W.). The PCR pro-
tocol consisted of an initial denaturation at 95°C for 20 
s, followed by 40 cycles of 95°C for 1 s and 60°C for 20 
s. Oligonucleotide primer and probe sequences were 

Apo-CoV-R-F (forward direction): 5’-GCC TAA 
TCC TGA TCC TAG CCG-3’, Apo-CoV-R-R (reverse 
direction): 5’-AAG AGA CAC ATA GCG TTC AAG- 
3’, and Apo-CoV-R-P (probe): 5’-TAMRA-CTG CTG 
GTG TTT TTG ATG-BHQ-3’ for RdRp gene.

Multiplex PCR-based NGS

Multiplex PCR-based NGS was conducted to acquire 
the genomic sequences of CoV from rodent faecal 
specimens. cDNA was amplified with overlapped 
seven parts of HCoV-KUMC22-3-specific multiplex 
primer mixtures using Solg 2X Uh-Taq PCR Smart 
Mix (Solgent, Daejeon, ROK) following manufac-
turer’s instructions. The enrichment was performed 
with the following composition: 12.5 µL 2X Uh pre-
mix, 2 µL of each primer mixture, 10.5 µL of D.W., 
and 1 µL of the DNA template in 25 µL final reaction 
mixture. The PCR conditions were as follows: an 
initial denaturation at 95°C for 15 min, followed by 
40 cycles at 95°C for 20 s, 50°C for 40 s, and 72°C 
for 1 min, and a final elongation at 72°C for 3 min. 
DNA libraries were prepared and sequenced using a 
Ligation Sequencing Kit (SQK-LSK109) with a Native 
Barcoding Kit (EXP-NBD104 and NBD114), accord-
ing to our previous standard protocols [20]. The mul-
tiplex primer sequences are listed in Supplementary 
Table 1.

NGS data analysis

Raw data underwent basecalling, demultiplexing, and 
trimming of adaptor sequences using Guppy version 
3.0.3 in MinKNOW (ONT) from the MK1C system. 
Subsequently, the filtered reads were consolidated 
into a single FASTA file using Porechop version 9.0. 
Viral reads were mapped to the reference genomic 
sequence of the AcCoV-JC34 strain, and consensus 
sequences were extracted using CLC Genomics Work-
bench version 22 (Qiagen) [16]. Manual polishing was 
performed based on our error-correction criteria [20].

Phylogenetic analysis

The CoV genomic sequences were aligned using the 
Clustal W algorithm in Lasergene version 5 (DNAS-
TAR, Madison, WI, USA). Phylogenies were recon-
structed using the best-fit substitution model of 
evolution and the maximum likelihood method in 
MEGA 7 [24]. Topologies were evaluated using a 
bootstrap analysis with 1,000 iterations.

Virus isolation

Nasal swabs and serum samples from a patient were 
inoculated into MRC-5 cells (ATCC, #CCL-171). Fol-
lowing 1.5 h of adsorption, excess inoculum was 
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removed, and the viral suspension was replaced with 
5.5 mL of Dulbecco’s modified Eagle’s medium sup-
plemented with 2% fetal bovine serum (Lonza, Basel, 
Switzerland), 16 µg/mL of TPCK-Trypsin (Thermo 
Fisher Scientific, Waltham, MA, USA), and 0.1% gen-
tamicin (Gibco, Life Technologies, Carlsbad, CA, 
USA). The cells were then cultured at 37°C in an incu-
bator with 5% CO2 and passaged every five days. Viral 
isolation was confirmed at each passage by conven-
tional RT–PCR [25,26].

Results

Case description

On 15 December 2022, a 103-day-old infant was hos-
pitalized with symptoms of fever, cough, sputum pro-
duction, and rhinorrhoea. Physical examination 
revealed redness of the left tympanic membrane, 
indicative of acute otitis media. Laboratory tests 
confirmed the presence of HPIV-1 and rhinovirus 
through respiratory virus multiplex real-time PCR 
(Supplementary Table 2). In the subsequent days, 
the fever subsided, and the respiratory symptoms 
improved. However, on the fourth day of hospitaliz-
ation, liver function tests showed significantly elev-
ated AST/ALT levels (462/350 IU/L) (Table 1). 
Abdominal ultrasonography indicated mildly 
increased liver parenchymal echogenicity with subtle, 
coarse textures. Serological tests for viral hepatitis 
were negative. Chest radiography revealed air trap-
ping in both lungs and peribronchial infiltration in 

the left lower lung (Figure 1). The detection of 
HCoV infection related to the AcCoV-JC34 strain 
was identified using mNGS in nasal swabs and 
serum specimens. Bacterial blood cultures were nega-
tive. Conservative treatment led to gradual improve-
ments in liver function and respiratory symptoms, 
and the infant was discharged on the eighth day. 
Post-discharge, the infant developed a transient 
whole-body skin rash and itching, which resolved 
spontaneously. Further investigation showed elevated 
total IgE levels of 10.0 IU/L, with no specific allergens 
identified. Importantly, the infant had no history of 
drug use that could have potentially induced liver 
injury (Supplementary Table 3).

Table 1. Summary of complete blood count, liver function, serological, and microbiology tests for patient KUMC22-3 during 
hospitalization.

Observation

Days of hospitalization

Normal value or 
range

Day 1 
(Hospitalization) Day 4 Day 5

Day 
6

Day 8 
(Discharge)

Day 14 (After 
discharge)

Complete blood count
WBC count (x103/μL) 8.43 11.04 N.D N.D N.D N.D 6.0-14.0
PLT count (x10³/μL) 387 473 N.D N.D N.D N.D 150–400
Neutrophil (%) 23.2 21.3 N.D N.D N.D N.D 57–67
Lymphocyte (%) 51.4 62.2 N.D N.D N.D N.D 25–33
Monocyte (%) 19 8.4 N.D N.D N.D N.D 3–7
Eosinophil (%) 5.9 7.7 N.D N.D N.D N.D 1–3
Basophil (%) 0.5 0.4 N.D N.D N.D N.D 0-0.75
CRP (mg/dL) 0.54 0.79 N.D N.D N.D N.D 0.08-1.12

Liver function test
AST (IU/L) 69 462 485 140 38 30 22–63
ALT (IU/L) 57 350 430 274 149 37 12–45
GGT (IU/L) N.D N.D 44 44 39 27 8–90
Total bilirubin (mg/dL) < 0.15 N.D <0.15 0.22 0.20 0.15 <1.0

Serological test
Anti-HAV IgM, HBV (HBs Ag and 

Ab), HCV Ab
N.D Negative N.D N.D N.D N.D –

Anti-(CMV, EBV, and HSV) IgM N.D Negative N.D N.D N.D N.D –
Microbiology test

Virus diagnostic: molecular 
method

HPIV-1/ rhinovirus – HCoV – – – –

Bacterial diagnostic: blood culture No growth after 5 days

KUMC, Korea University Medical Center; WBC, white blood cell; PLT, platelet; CRP, C-reactive protein; AST, aspartate aminotransferase; ALT, alanine ami-
notransferase; GGT, Gamma-glutamyl transferase; HAV, hepatitis A virus; IgM, Immunoglobulin M; HBV, hepatitis B virus; HBs, hepatitis B surface; Ag, 
antigen; Ab, antibody; HCV, hepatitis C virus; CMV, cytomegalovirus; EBV, Epstein-barr virus; HSV, Herpes simplex virus; N.D, not determined; HPIV-1, 
human parainfluenza virus 1; HCoV, human coronavirus.

Figure 1. On the fourth day of admission, a chest x-ray 
revealed air trappings in both lungs and peribronchial infiltra-
tion in the left lower lung.
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Epidemiological survey

Following the diagnosis of HCoV infection in the 
KUMC22-3 patient, an epidemiological investigation 
was conducted (Table 2). The infant was born vagin-
ally at 39 weeks of gestation without perinatal com-
plications, weighing 2.86 kg. Approximately 25 days 
after birth, the patient experienced asymptomatic 
COVID-19, which was independently identified 
through real-time PCR testing. This coincided with 
infections among all family members; however, the 
patient did not exhibit any clinical symptoms at 
the time of hospitalization. The patient’s medical 
history was unremarkable. The infant received all 
vaccinations according to standard ROK guidelines 
and did not require medication. The patient demon-
strated appropriate eye contact and babbling, indi-
cating normal developmental progress. Both 
parents, of Korean ethnicity, were healthy and had 
no significant medical history. The patient and 
family resided in an urban apartment in Hwa-
seong-si, Gyeonggi Province, without any pets and 
had no reported contact with wild animals within 
the past six months.

Retrospective rodent surveillance for CoV

A total of 880 Apodemus spp. were collected from 19 
areas in Gangwon, Gyeonggi, Chungcheongnam, 
Jeollanam Provinces, and Jeju Island, ROK, from 
2018 to 2022 (Figure 2). The molecular prevalence 
of α-CoV RNA was 16/880 (1.8%), with 4/97 
(4.1%) in Yanggu-gun, Gangwon Province, and 12/ 
71 (16.9%) in Jeju-si, Jeju Island, ROK (Table 3). 
CoV RNA was undetectable in rodents captured 
from the Gyeonggi, Chungcheongnam, and Jeolla-
nam Provinces. Quantification of α-CoV RNA was 
determined from faecal samples of the rodents (Sup-
plementary Table 4).

Complete-coding genome sequencing of CoV

The genomic sequences of HCoV were obtained from 
both the nasal swab and serum specimens of 
KUMC22-3, using SISPA-based NGS with coverage 
rates of 75.2% for the nasal swab and 71.1% for the 
serum samples (Supplementary Table 5). The mean 
number of viral reads mapped to the reference 
sequence (AcCoV-JC34 strain) was 30,524 (1.5%) for 
α-CoV genome, with an average depth of coverage 
of 603.9. Additionally, using multiplex PCR-based 
NGS, four complete-coding genomic sequences of α- 
CoVs (Ac18-16, Ac18-19, Ac20-8, and Aa22-10) 
were acquired from the faecal samples of rodents, 
with coverage rates ranging from 98.7% to 99.4% 
(Supplementary Table 6). The complete genomic 
sequences of the CoV coding region were recovered 
using conventional nested RT–PCR followed by San-
ger sequencing.

Genomic characterization and phylogenetic 
analysis of CoV

HCoV KUMC22-3 exhibited a genomic structure 
characteristic of CoVs, arranged from 5′ to 3′ as fol-
lows: non-structural proteins in the ORF1ab region; 
structural proteins including S, envelope (E), mem-
brane (M), and nucleocapsid (N); and accessory pro-
teins (Supplementary Figure 1 and Supplementary 
Table 7). Amino acid identities of HCoV KUMC22- 
3 were 97.6%–98.6% for 3C-like protease, 96.2%– 
97.3% for RdRp, 94.7%–96.2% for helicase, 96.6%– 
97.4% for the S protein, 98.7%–100% for the E protein, 
95.2%–96.8% for the M protein, and 94.9%–96.1% for 
the N protein, compared to those of α-CoVs carried by 
Apodemus spp. (Table 4). Phylogenetic analysis 
demonstrated that HCoV KUMC22-3 forms a hom-
ologous genetic lineage with the AcCoV, AaCoV, 
and AcCoV-JC34 strains (Figure 3 and Supplementary 
Figure 2).

Virus isolation

HPIV-1 was isolated from a nasal swab specimen of 
the KUMC22-3 patient using a cell culture-based 
method. The first isolate of HPIV-1 was confirmed 
at passage two (ten days post-inoculation) (Sup-
plementary Figures 3–4). Attempts to culture HCoV 
and rhinovirus in MRC-5 cells were unsuccessful.

Discussion

We present the first documented case of pneumonia in 
an infant, complicated by co-infection involving a 
novel HCoV, HPIV-1, and rhinovirus. Co-infection 
of HCoV with other respiratory viruses, such as 
HPIV 1–3 and rhinoviruses, is frequently observed 

Table 2. Epidemiological characteristics of patient KUMC22-3 
with HCoV infection.
Patient code KUMC22-3
Age (days) 3 to <4 months (103)
Gender Male
Onset date 15th December 2022
COVID-19 history Asymptomatic COVID-19 infection around 

the 25 days after birth
Geographic region (Year) Hwaseong-si, Gyeonggi Province, Republic 

of Korea (2022)
Living environment Urban area
Exposure to domestic 

animals
No

Exposure to wild animals No
Travel history (within 6 

months)
No

Hospital admission Yes
Intensive care unit 

admission
Yes

Other concomitant 
pathogens detected

Human parainfluenza virus 1 and 
rhinovirus

KUMC, Korea University Medical Center; HCoV, human coronavirus.

Emerging Microbes & Infections 5



in clinical practice [5,10,11]. The patient was admitted 
with symptoms of fever, cough, sputum production, 
and rhinorrhoea. While AST/ALT levels were tempor-
arily elevated (462/350 IU/L) on the fourth day of 
admission, follow-up observations revealed rapid 
recovery, suggesting these abnormalities were transi-
ent. Although HPIV-1 was isolated from nasal swab 
specimens, its role in hepatic dysfunction remains 
uncertain. Rare instances of HPIV-related viraemia 
or systemic infection have been reported; however, a 
direct link to liver dysfunction is limited [27]. Liver 
impairment in humans due to HPIV is more likely 
associated with severe systemic infections rather 
than typical virus-specific manifestations [27,28]. 
Here, we identified and characterized the novel 
HCoV genome in both nasal swab and serum speci-
mens, while HPIV-1 infection was detected only in 
nasal swab samples. These findings suggest that the 
reactive liver injury observed in this patient may be 

attributed to the novel HCoV infection. Notably, pre-
vious studies have linked COVID-19 to paediatric 
acute severe hepatitis and liver failure in cases with 
minimal or no respiratory symptoms [29]. Addition-
ally, an HCoV HKU1-related paediatric acute liver 
failure case showed no significant respiratory involve-
ment [30]. This highlights the need for further studies 
to determine whether abnormal liver function is a 
clinical feature of newly identified HCoV infections.

High-throughput sequencing technologies play an 
indispensable role in diagnosing infectious diseases, 
enabling precision management of patients, and con-
trolling viral outbreaks [31–34]. The application of 
mNGS in this case allowed for the identification and 
genomic characterization of the novel pathogen, par-
ticularly for an illness with no clear etiology [35]. 
mNGS-based clinical sequencing, when integrated 
with epidemiological data, facilitates genomic surveil-
lance of emerging viruses by elucidating their 

Figure 2. Geographical distribution of alphacoronavirus (α-CoV) strains from patient KUMC22-3 and rodents in the Republic of 
Korea (ROK), 2018-2022. The map illustrates the locations of HCoV KUMC22-3, identified in an urban area (red symbol; Hwa-
seong-si, Gyeonggi Province), and α-CoV RNA-positive Apodemus spp. (blue circles), collected from 19 regions across the ROK. 
These areas include Yanggu-gun, Cheorwon-gun, Chuncheon-si, Hongcheon-gun, Hwacheon-gun, Inje-gun, and Pyeongchang- 
gun in Gangwon Province; Gapyeong-si, Goyang-si, Paju-si, Pocheon-si, Yangju-si, and Yeoncheon-gun in Gyeonggi Province; 
Sejong-si and Yesan-gun in Chungcheongnam Province; Damyang-gun and Gwangju-si in Jeollanam Province; and Jeju-si and 
Seogwipo-si on Jeju Island. The red symbol marks the urban location where HCoV KUMC22-3 was detected, while blue circles 
denote sites where α-CoV RNA was identified in rodents, including (A) Yanggu-gun (for AaCoV Aa22-8, AaCoV Aa22-9, AaCoV 
Aa22-10, and AaCoV Aa22-12) and (B) Jeju-si (for AcCoV Ac18-6, AcCoV Ac18-14, AcCoV Ac18-15, AcCoV Ac18-16, AcCoV Ac18- 
18, AcCoV Ac18-19, AcCoV Ac20-5, AcCoV Ac20-8, AcCoV Ac20-12, AcCoV Ac20-17, AcCoV Ac20-19, and AcCoV Ac20-32). Black 
circles represent locations where α-CoV RNA was not detected in rodents during this study, as identified through retrospective 
surveillance. The map was created using a Quantum Geographical Information System (QGIS) 3.10 for Mac and modified using 
Adobe Illustrator CC 2019. Abbreviations: HCoV, human coronavirus; KUMC, Korea University Medical Center; AaCoV, Apodemus 
agrarius coronavirus; AcCoV, Apodemus chejuensis coronavirus.
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transmission dynamics and spread [36–38]. In this 
study, we obtained the complete coding genome 
sequence of HCoV KUMC22-3 from a nasal swab 
specimen of a patient using mNGS. Additionally, we 
recovered complete coding genome sequences of 
four rodent-borne α-CoVs using a newly developed 
amplicon-based NGS approach. Phylogenetic analyses 
revealed that HCoV KUMC22-3 was closely related to 
α-CoV strains and shared a common evolutionary 
ancestor with those carried by Apodemus spp. in 
ROK and China [16]. However, it is noteworthy that 
the patient was an infant residing in an urban apart-
ment, with limited exposure to wild animals. Neither 
the patient nor their family-owned pets, and they 
had not travelled within the past six months before 
the HCoV infection. These findings underline the 
importance of further investigation to elucidate the 
origin, transmission, and pathogenicity of HCoV 
KUMC22-3 and related α-CoVs.

Several limitations in this study warrant consider-
ation: (1) as this study is based on a single case, lar-
ger-scale and longitudinal cohort studies are 
essential to characterize the epidemiological preva-
lence, clinical significance, and disease severity 
associated with this novel α-CoV in humans and 
wild animals. (2) This study did not fulfil estab-
lished causality standards, such as Koch’s postulates 
or the Bradford Hill criteria, emphasizing the need 
for caution in interpreting our findings. Further 
research should aim to establish a causal relation-
ship between HCoV KUMC22-3 infection and clini-
cal outcomes.

Table 3. Molecular prevalence of alphacoronavirus (α-CoV) in 
Apodemus spp. from the Republic of Korea, 2018-2022.

Province Trapping site
Number of 

Apodemus spp.
Positivity for 

α-CoV (%)

Gangwon Yanggu-gun 97 4/97 (4.1)
Cheorwon-gun 225 0/225
Chuncheon-si 36 0/36
Hongcheon- 

gun
42 0/42

Hwacheon-gun 86 0/86
Inje-gun 52 0/52
Pyeongchang- 

gun
2 0/2

Subtotal 540 4/540 (0.7)
Gyeonggi Gapyeong-si 2 0/2

Goyang-si 11 0/11
Paju-si 118 0/118
Pocheon-si 3 0/3
Yangju-si 11 0/11
Yeoncheon- 

gun
37 0/37

Subtotal 182 0/182
Chungcheongnam Sejong-si 27 0/27

Yesan-gun 13 0/13
Subtotal 40 0/40

Jeollanam Damyang-gun 9 0/9
Gwangju-si 23 0/23
Subtotal 32 0/32

Jeju Jeju-si 71 12/71 (16.9)
Seogwipo-si 15 0/15
Subtotal 86 12/86 (14.0)

Total 880 16/880 (1.8)
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In conclusion, we report the first case of pneu-
monia accompanied by transient liver dysfunction 
in an infant co-infected with the novel HCoV, 
HPIV-1, and rhinovirus. Phylogenetic analyses indi-
cate that HCoV KUMC22-3 shared evolutionary 
ancestry with rodent-derived α-CoVs. Our study 
highlights the value of mNGS in identifying and 
characterizing novel pathogens in clinical practice. 
This report underscores the importance of heigh-
tened awareness among physicians regarding the 
potential clinical manifestations of newly identified 
HCoV.
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