Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 Dec;115(5):865–871. doi: 10.1042/bj1150865

Rates of efflux and intracellular concentrations of potassium, sodium and chloride ions in isolated fat-cells from the rat

M C Perry 1,*, C N Hales 1
PMCID: PMC1185227  PMID: 5360721

Abstract

1. The metabolism of K+, Na+ and Cl has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular 42K+, 22Na+ and 36Cl and the intracellular concentrations of K+, Na+ and Cl in isolated fat-cells. 3. The intracellular water space, measured as the [3H]water space minus the [carboxylic acid-14C]inulin space, was 3·93±0·38μl./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0·029min.−1 for 42K+, 0·245min.−1 for 22Na+ and 0·158min.−1 for 36Cl. 5. The intracellular concentrations of K+, Na+ and Cl were 146m-equiv./l., 18·6±2·9m-equiv./l. and 43±2·4m-equiv./l. respectively. 6. The total intracellular K+ content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K+, 1·5pmoles/cm.2/sec., Na+, 1·6pmoles/cm.2/sec., and Cl, 2·4pmoles/cm.2/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl distribution ratio was −28·7mv.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONTING S. L., SIMON K. A., HAWKINS N. M. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys. 1961 Dec;95:416–423. doi: 10.1016/0003-9861(61)90170-9. [DOI] [PubMed] [Google Scholar]
  2. CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
  3. CROFFORD O. B., RENOLD A. E. GLUCOSE UPTAKE BY INCUBATED RAT EPIDIDYMAL ADIPOSE TISSUE. RATE-LIMITING STEPS AND SITE OF INSULIN ACTION. J Biol Chem. 1965 Jan;240:14–21. [PubMed] [Google Scholar]
  4. Clausen T., Rodbell M., Dunand P. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts. J Biol Chem. 1969 Mar 10;244(5):1252–1257. [PubMed] [Google Scholar]
  5. Creese R. Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J Physiol. 1968 Jul;197(2):255–278. doi: 10.1113/jphysiol.1968.sp008558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crofford O. B., Stauffacher W., Jeanrenaud B., Renold A. E. Glucose transport in isolated fat cells. Procedures for measurement of the intracellular water space. Helv Physiol Pharmacol Acta. 1966;24(1):45–57. [PubMed] [Google Scholar]
  7. DANIEL E. E. POTASSIUM MOVEMENTS IN RAT UTERUS STUDIED IN VITRO. I. EFFECTS OF TEMPERATURE. Can J Biochem Physiol. 1963 Oct;41:2065–2084. [PubMed] [Google Scholar]
  8. Denton R. M., Yorke R. E., Randle P. J. Measurement of concentrations of metabolites in adipose tissue and effects of insulin, alloxan-diabetes and adrenaline. Biochem J. 1966 Aug;100(2):407–419. doi: 10.1042/bj1000407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fain J. N. Stimulation by insulin and prostaglandin E1 of glucose metabolism and inhibition of lipolytic action of theophylline on fat cells in the absence of K+. Endocrinology. 1968 Sep;83(3):548–554. doi: 10.1210/endo-83-3-548. [DOI] [PubMed] [Google Scholar]
  10. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GOODFORD P. J., HERMANSEN K. Sodium and potassium movements in the unstriated muscle of the guinea-pig taenia coli. J Physiol. 1961 Oct;158:426–448. doi: 10.1113/jphysiol.1961.sp006778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldrick R. B. Morphological changes in the adipocyte during fat deposition and mobilization. Am J Physiol. 1967 Apr;212(4):777–782. doi: 10.1152/ajplegacy.1967.212.4.777. [DOI] [PubMed] [Google Scholar]
  13. Ho R. J., Jeanrenaud B., Renold A. E. Ouabain-sensitive fatty acid release from isolated fat cells. Experientia. 1966 Feb 15;22(2):86–87. doi: 10.1007/BF01900164. [DOI] [PubMed] [Google Scholar]
  14. Kypson J., Triner L., Nahas G. G. Effects of ouabain and K+-free medium on activated lipolysis and epinephrine-stimulated glycogenolysis. J Pharmacol Exp Ther. 1968 Jan;159(1):8–17. [PubMed] [Google Scholar]
  15. Letarte J., Renold A. E. Glucose metabolism in fat cells stimulated by insulin and dependent on sodium. Nature. 1967 Aug 26;215(5104):961–962. doi: 10.1038/215961a0. [DOI] [PubMed] [Google Scholar]
  16. McLENNAN H. The transfer of potassium between mammalian muscle and the surrounding medium. Biochim Biophys Acta. 1955 Jan;16(1):87–95. doi: 10.1016/0006-3002(55)90186-4. [DOI] [PubMed] [Google Scholar]
  17. Miller L. V., Schlosser C. H., Beigelman P. M. Electrical potentials of isolated fat cells. Biochim Biophys Acta. 1966 Feb 7;112(2):375–376. doi: 10.1016/0926-6585(66)90336-0. [DOI] [PubMed] [Google Scholar]
  18. Modolell J. B., Moore R. O. ATPase activities of rat epididymal adipose tissue. Biochim Biophys Acta. 1967 May 2;135(2):319–332. doi: 10.1016/0005-2736(67)90125-3. [DOI] [PubMed] [Google Scholar]
  19. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  20. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  21. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  22. WELLER J. M., TAYLOR I. M. Rate of potassium exchange in the rat erythrocyte. Proc Soc Exp Biol Med. 1951 Dec;78(3):780–782. doi: 10.3181/00379727-78-19216. [DOI] [PubMed] [Google Scholar]
  23. Wiggins P. M. A kinetic study of the state of potassium in kidney tissue. Biochim Biophys Acta. 1965 Nov 29;109(2):454–466. doi: 10.1016/0926-6585(65)90171-8. [DOI] [PubMed] [Google Scholar]
  24. ZIERLER K. L. Effect of insulin on potassium efflux from rat muscle in the presence and absence of glucose. Am J Physiol. 1960 May;198:1066–1070. doi: 10.1152/ajplegacy.1960.198.5.1066. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES