
Using multiple alignments to improve seeded
local alignment algorithms
Jason Flannick* and Serafim Batzoglou

Department of Computer Science, Stanford University, Stanford, CA 94304, USA

Received June 8, 2005; Revised July 6, 2005; Accepted July 27, 2005

ABSTRACT

Multiple alignments among genomes are becoming
increasingly prevalent. This trend motivates the
development of tools for efficient homology search
between a query sequence and a database of multiple
alignments. In this paper,we presentan algorithm that
uses the information implicit in a multiple alignment
to dynamically build an index that is weighted most
heavily towards the promising regions of the multiple
alignment. We have implemented Typhon, a local
alignment tool that incorporates our indexing algo-
rithm,whichour test resultsshow tobemoresensitive
than algorithms that index only a sequence. This
suggests that when applied on a whole-genome
scale, Typhon should provide improved homology
searches in time comparable to existing algorithms.

INTRODUCTION

Sequence alignment is certainly one of the most well-
developed and pervasive topics of computational molecular
biology. Algorithms in this vein are widely used for tasks
varying from the comparative analysis of rodent (1–5) and
chicken (6) genomes to the construction of networks of protein
interactions (7). With the current sequencing of many genomes
(8), fast and sensitive sequence alignment algorithms will
likely maintain or increase their role in biological research.

As more and more genomic data has become available,
algorithms for locally aligning query sequences to genomic
databases have become increasingly important (9–13).
Because the exact Smith–Waterman (14) algorithm is imprac-
tical for large sequences, database search techniques are
almost always based upon the paradigm of seeded alignments.
The BLAST algorithm (10) was pivotal in popularizing
such a technique, and it has since been incorporated into
many tools, a few of which are BLASTZ (4), BLAT (13)
and Exonerate (15). In such algorithms, a set of seeds is
first generated between the database and the query. Each

seed is then extended to determine whether it is a part of
high scoring local alignment. Extensions typically consist
of two phases: first the seed is extended into an un-gapped
alignment, and if this alignment scores above a threshold, the
seed is then extended with the allowance of gaps. An enhance-
ment to this simple model is to extend only pairs of seeds close
to each other (11). Seeds for the BLAST algorithm are tradi-
tionally fixed-length words present in both the database and
the query, with the word length referred to as the seed’s
weight. This leads to an inevitable speed/sensitivity trade-
off; heavier seeds prune a larger fraction of the search
space but miss more alignments than do seeds with a smaller
weight.

In recent years, the introduction of spaced seeds has led to
significantly improved local alignment algorithms (12,16–20).
Spaced seeds allow non-contiguous patterns of matching
nucleotides to initiate a local alignment, and algorithms
have been developed (17–22) to compute the probability
that a seed will be found within an un-gapped alignment of
a given length between two sequences. The optimal seed can
then be chosen as the seed that maximizes this probability. It
is useful to think of un-gapped alignments of homologous
regions as being generated by a probabilistic model that
specifies the distribution over matches and mismatches
(17,20,22). The model outputs a bit string where each position
corresponds to a position in the alignment; the bit is 1 if
there is a match in the alignment and 0 if there is a mismatch.
While higher-order models are possible (19), in this article
we will focus on models that output a 1 independently in each
position with a fixed probability, which is called the similarity
level (12).

In addition to being provably more sensitive than consecu-
tive seeds in some cases (21), spaced seeds allow an important
new speed/sensitivity trade-off. Rather than lowering the
weight of a seed to boost sensitivity, one can index multiple
seeds per position and obtain a linear, rather than exponential,
rise in the size of the search space (18,20). Spaced seed design
operates under a resource-constrained paradigm (17), where
the weight and number of seeds is specified and the goal is to
design an optimal set of seeds that fits these constraints.

*To whom correspondence should be addressed. Tel: +1 650 289 0295; Fax: +1 650 725 1449; Email: flannick@cs.stanford.edu
Correspondence may also be addressed to Serafim Batzoglou. Tel: +1 650 723 3334; Fax +1 650 725 1449; Email: serafim@cs.stanford.edu

� The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

Nucleic Acids Research, 2005, Vol. 33, No. 14 4563–4577
doi:10.1093/nar/gki767

In this article, we seek to build on these developments by
taking advantage of increasing amounts of available genomic
data as well as rapidly improving global multiple sequence
alignment algorithms (23–26). We predict that in the near
future, these trends will lead to the proliferation of genomic
databases consisting of multiple alignments. Information
implicit in an alignment has been used to aid in a variety
of bioinformatics tasks (27–30), and, similarly, one can
hope that a multiple alignment can be utilized to improve
database search algorithms. Previous research on searching
between multiple alignments has concentrated on position
specific scoring schemes (11,31,32). PSI-BLAST (11) is the
most popular such program; given a query sequence, it builds
a multiple alignment, or profile, from a set of high scoring
alignments of the query to the database. It then uses the con-
structed profile to iterate searches for improved sensitivity.
Approaches in this vein have been successful, but in this
paper, our focus is orthogonal to such techniques.

The problem we tackle is to align a query sequence to a fixed
multiple alignment database. As an example, it may be desir-
able to augment a multiple alignment of mammalian genomes
with a newly sequenced mammalian or vertebrate genome.
Our approach uses the multiple alignment database to improve
search sensitivity over that obtained using only a sequence
database. To do this, we extend the resource-constrained
paradigm to apply not only to seed design but also to
seed allocation; we allow different positions in the database
to index different sets of seeds and determine the best way
to do so based on the information implicit in the multiple
alignment.

We have implemented a local alignment tool, Typhon,
which incorporates our indexing algorithm. Tests on real
world data shows that Typhon is substantially more sensitive
than standard sequence indexing algorithms as well as
algorithms that index multiple alignments without using our
dynamic indexing methodology. The performance improve-
ment is most dramatic for indexes with a small number of
spaced seeds, which is important for large-scale database
searches. Source code for Typhon is available under the
GNU public license at http://typhon.stanford.edu.

ALGORITHMS

Overview

We are initially given a multiple alignment, a hypothetical
query sequence and a phylogenetic tree of all species in the
alignment as well as the query. We convert the multiple align-
ment into a probabilistic profile, where each position in the
profile is a tuple of six numbers (ppresent, pA, pC, pT, pG, pid).
The first number, ppresent, is the existence probability. It repre-
sents the probability that a homologue of the position is pre-
sent in the query or, equivalently, the probability that the query
would align to the position without a gap. The next four values
indicate the respective conditional probabilities that the homo-
logous position contains an A, C, G or T, given that there exists
a homologous position in the query. The nucleotide with the
highest such value is called the consensus character; gaps are
ignored when determining this. Note that the consensus char-
acter in principle depends on the position of the query in the
tree. The final value, pid, is the conditional similarity level (12)

of the position given that there exists a homologous position in
the query. In other words, it represents the probability that the
corresponding position in the query sequence contains the
consensus character of the multiple alignment. For the remain-
der of this paper, we will use the terms profile and probabilistic
profile interchangeably.

To begin with, we define several terms. A seed of weight
w is a sequence of possibly non-consecutive positions
(i1 < ·· < iw); by convention, i1 ¼ 0. The span of a seed is
defined as iw � i1 + 1. We define an un-gapped homology
h of length l beginning at position p in sequence s and position
q in sequence t as two sub-sequences (s[p], . . . , s[p + l]) and
(t[q], . . ., t[q + l]) that have descended from a common ances-
tor; one can think of such a homology as a bit string of length
l with h[i] ¼ 1 if and only if s[p + i] ¼ t[q + i]. A seed is said
to match the homology at offset j if h[j + i1] ¼ 1, . . . ,
h[j + iw] ¼ 1, and indexing a seed at position p in a sequence
corresponds to recording in the index the presence of
(s[p + i1], . . ., s[p + iw]) at position p. A seed matches a
homology if we index the seed at every position in the homol-
ogy and the seed matches the homology at at least one offset. A
set of seeds matches a homology if we index every seed in the
set at every position in the homology and at least one seed in
the set matches the homology.

We extend these notions to a multiple alignment in a simple
manner; homologies are defined to exist between the query
and the alignment. An un-gapped homology beginning at
position p in the alignment and position q in the query is a
set of sub-sequences, one from each species in the alignment as
well as the query, that have all descended from a common
ancestor. In this case, we define h[i] ¼ 1 if and only if the
consensus character at position p + i in the alignment matches
the query character at position q + i. Indexing a seed at a
position in a multiple alignment corresponds to recording
the presence of the string consisting of the consensus characters
of the multiple alignment. The notion of a seed matching a
homology follows from these definitions. We observe that
more complex definitions of homology between a query and
an alignment are possible, but we do not address them here.

With these definitions, we can formulate our problem as
follows:

Given a probabilistic profile, a set of candidate seeds and a
budget B, index a subset of the candidate set at each position in
the profile such that the average number of seeds indexed per
position of the database does not exceed B. The goal is to
maximize the expected number of homologies matched by at
least one seed.

Without a budget constraint, this value would obviously be
maximized by indexing every seed in the candidate set at every
position in the alignment. The value of the budget determines
the size of the index and, therefore, the expected number of
seed matches; higher values will result in more seed extensions
and therefore lead to larger running times. Algorithms that
build indexes from sequence databases assign the same set
of seeds, with cardinality equal to the budget, to each position
in the database. Because we have extra information in
the multiple alignment, we can be more flexible. Intuitively,
we would like to assign more seeds to positions where
this increase is most likely to result in additional detected
homologies. We must respect the constraint that the average

4564 Nucleic Acids Research, 2005, Vol. 33, No. 14

http://typhon.stanford.edu

number of seeds indexed per position does not exceed our
budget.

Within a multiple alignment, local rates of conservation
vary widely due to both random fluctuations in the number
of accumulated mutations as well as differential selective
pressures. Both of these effects cause some portions of the
multiple alignment to be naturally less likely to contain a
match to a homologue in a query sequence. Our algorithm
exploits this property to determine how to vary the subset of
candidate seeds indexed at each position. Specifically, we use
local conservation rates to partition the multiple alignment into
regions, which are contiguous blocks of positions whose
boundaries reflect changes in the conservation level among
species in the alignment (Figure 1).

Our approach, then, is to change the set of seeds assigned on
a region-by-region basis. By assigning fewer seeds to unpro-
mising regions, we can pay more attention to promising
regions and increase sensitivity while still respecting our bud-
get. A high-level outline of our algorithm is shown in Figure 2.
First, we convert the multiple alignment into a probabilistic
profile. We then use a hidden Markov model to partition the
profile into a set of regions where each region gives us the
necessary information to evaluate the probability that a
homology will exist in that region as well as the probability
that a seed will match the homology. Finally, we choose the set
of seeds to assign to each position based upon the region to
which it belongs. We aim to assign enough seeds to ensure a
high probability of finding a match but not too many to waste
our budget when it can be used more effectively elsewhere.

We note that in theory one could use a different candidate
set of seeds for each position. Such an approach would be
particularly useful in cases where highly variable similarity

levels strongly influence the optimal shape of the candidate
seeds. A typical case is coding exons, where seeds with sig-
nificant 3-periodicity such as the (0,1,2,8,9,11,12,14,15,17,18)
seed (17) have been shown to perform well because they
accommodate 3rd-base wobble positions. We do not pursue
these options here; rather, we fix the candidate set for all
regions and vary only the number of seeds assigned to each
position.

Generation of the profile

Our first goal is to convert the alignment into a probabilistic
profile. We assume that we are given a phylogenetic tree and
the position in the tree at which we expect the query to lie; we
root this tree at the query. For each position, we work our way
up from the leaves, obtaining ppresent and pN for each nucleo-
tide N 2 {A, C, T,G} at each node in the tree; we obtain pid

only at the root. A leaf has ppresent ¼ 1 if the corresponding
sequence is un-gapped at the position in the multiple align-
ment and 0 otherwise. Furthermore, it has probability pN ¼ 1
for the nucleotide present in the sequence; if ppresent is 0, then
we set pN ¼ 0 for all N.

As we work up the tree, we obtain ppresent and pN indepen-
dently. For each internal node, we obtain pN by applying
Felsenstein’s algorithm with a Kimura rate matrix (34–36).
Since some children can have pN ¼ 0 for each nucleotide, we
consider only children for which at least one pN is positive.
The task of obtaining ppresent is somewhat more problematic
because there is not as well-developed an evolutionary theory

(a)

(b)

Figure 1. Sample region boundaries. Boundaries between the two regions in the
multiple alignment reflect the changes in conservation among the species in the
alignment. Both (a) and (b) are taken from real data. In the first case, the latter
region is more likely to yield alignments to a query sequence, while in the
second case, the former region is more likely to yield alignments.

Figure 2. High-level diagram of the Typhon algorithm for indexing a multiple
alignment. The overall flow of Typhon consists of three main algorithmic
components; above, data is shown in ovals and methods are shown in rectangles.
Given a tree and query, the multiple alignment is first converted into a prob-
abilistic profile. Then, the profile is decoded recursively using a simple Hidden
Markov Model. Finally, the regions are assigned a set of seeds to index.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4565

for insertions and deletions as there is for nucleotide substitu-
tions. For a node n, our method sets ppresent(n) to be a weighted
average

P
i wi · ppresent(ni), where the sum is taken over all

children of n. We choose the weight assigned to a child to be
proportional to the inverse of the branch length between the
parent and the child and normalize the weights sum to one.

When we have reached the root, we choose pid as
maxN2{A, C, T, G}(pN). This is because the maximum pN cor-
responds to the conditional probability that the consensus
character of the multiple alignment is present at the homo-
logous position in the query, given that there is a homologous
position in the query. Because at a given position in the multi-
ple alignment we choose the consensus character as the char-
acter to record in the index, the average value of pid obtained in
such a way over a region will correspond to the conditional
similarity level of the alignment of that region to a homologue
in the query.

It turns out that reconstructing the profile in this manner
results in empirically slightly inaccurate values. In particular,
it tends to overestimate actual values of pid, which presents
difficulties because small changes in the value of pid can have
large effects on the estimated hit probability of a seed (12,18).
Furthermore, such an estimate for ppresent is heuristic and is not
guaranteed to yield accurate predictions.

A complete treatment of profile reconstruction is beyond the
scope of this paper. For our purposes, we plotted the predicted
versus experimental values of ppresent and pid for several spe-
cies and assessed accuracy. To do this, we began with a multi-
ple alignment, removed one species as the test species, and
converted the remaining alignment to a probabilistic profile
using the method described above. We then grouped the values
of ppresent and pid as predicted by the profile into a finite set of
buckets, each representing a discrete value.

For each discrete value of ppresent and pid as predicted by the
profile, we calculated the experimental values of ppresent and
pid for the test species as follows. To obtain the experimental
ppresent for a given discrete predicted value, we first counted the
total number of positions in the profile at which ppresent was
that value. Of those positions, we counted the number of
positions that were un-gapped in the test species. The experi-
mental value was then determined as the latter number divided
by the former. The experimental values of pid were obtained
similarly.

If our predictions were perfectly accurate, resulting plots of
experimental versus predicted values would show a linear
relationship with slope 1. Plots for ppresent had an extremely
high variance and did not appear to follow an obvious pattern,
and, based upon these results, we kept our predictions for
ppresent unchanged. Improved predictions are likely possible
and can only improve the performance of our algorithm; how-
ever, they do not appear immediately available. The plots for
pid, on the other hand, did appear to follow a pattern; Figure 3
shows sample plots for pid for two different test species, cat
and chicken, obtained from an alignment consisting of human,
chimp, baboon, dog, cat, pig, cow and chicken. These plots are
similar to plots obtained using other species as test cases.

We do not attempt to address any possible theoretical foun-
dations for the above plots here, as that would take us far from
our current focus. Currently, our chief concern is only to
convert our initial predictions into values that will work
well when given as input to our indexing algorithm, and we

found that fitting an exponential curve of the form
g(x) ¼ aeb(x) + d to our data was more than adequate for
this purpose in practice. We chose a and d to fix
g(0) ¼ 0.25 and g(1) ¼ 1; this leaves b as an adjustable para-
meter. Based upon our observations, a value of b ¼ 4 seems to
work fairly well for a variety of species, and we fixed this
parameter for all of our tests.

Region decomposition

As mentioned above, one advantage of a multiple alignment is
that it delineates different regions, each of which can be char-
acterized by a conservation level among the species in the
alignment. Therefore, before building an index, our algorithm
partitions the probabilistic profile into a set of such regions.
For simplicity, we group regions into a finite number of region
classes; a region class is a pair of characteristics (ppresent, pid),
which represent typical values of ppresent and pid, respectively,
for each region in the region class. All regions in a region class
index the same set of seeds.

Partitioning a profile into regions can be done with the aid of
a simple Hidden Markov Model, where the states are region
classes that emit values of ppresent and pid. Similar ideas have
been explored before (19,36); for our purposes here, it is
enough that all regions in a region class possess roughly
the same properties. It is important that the cardinalities of
the region classes be roughly equal so that we have maximum
flexibility when assigning seeds; if one region class is enor-
mous, then in order to free enough budget to assign extra seeds
to it we must choose to assign fewer seeds to a large number of
smaller region classes, which may be undesirable.

We begin this section by considering a conceptually
straightforward approach for decomposing a profile in order
to introduce the basic ideas of our method. We then describe
how our particular approach extends this idea.

Suppose that we build an HMM consisting of states for each
region class (ppresent, pid). Each state emits a position of the
profile with values (ppresent, pid) with probability proportional
to exp(�|ppresent � ppresent|) · exp(�|pid � pid|) and transi-
tions to every state other than itself with equal probability.
This probability can be chosen to ensure that the optimal
Viterbi parse (33) gives no region shorter than a minimum
length; this length should be large enough to ensure that every
region is at least larger than the span of our seeds, and we
found that a minimum region length of 64 works reasonably
well for seeds of span �20.

Once this HMM has been constructed, each position can be
assigned to the region class corresponding to the state that
emits it in the optimal parse obtained via the Viterbi algorithm.
Region boundaries then occurs between two positions that
belong to different region classes.

This basic algorithm suffers from the problem that we must
determine the set of region classes at the beginning of the
algorithm in order to be able to construct the HMM. The
weakness of this approach is shown in Figure 4a. If we choose
to represent each position in the profile as a point (ppresent, pid),
then choosing a set of region classes is conceptually related to
partitioning the plane in which the positions lie. All points
contained in a rectangle in the partition are closest to the center
of a specific region class. By fixing the region classes a priori,
we will likely make choices that do not fit the structure of the

4566 Nucleic Acids Research, 2005, Vol. 33, No. 14

profile. The chief problem occurs when several region classes
are empty and one region class contains many more regions
than the others; in this case partitioning achieves little.

An alternative method is to adaptively choose region classes
to match the manner in which the positions are distributed, as
shown in Figure 4b. One way of doing this is to use k-means
clustering (37) and choose region classes corresponding to
the resulting clusters. This does not translate directly to our
problem, however, as choosing region classes in this manner

cannot predict how the profile will actually be decoded by
the HMM. Instead, we use a related algorithm that somewhat
corrects this problem. This is related to the fundamental idea
behind wavelets (38), which can analyze data dynamically by
decomposing a signal into pieces that can be represented at
different scales of resolution.

Our algorithm is shown graphically in Figure 5. At a high-
level, we progressively split the profile into regions belonging
to one of two region classes. We perform the decoding at each

(a)

(b)

Figure 3. Plots of predicted versus experimental profile values. For use in correcting predictions of profile values, we plotted predicted versus experimental values of
(a) pid for cat and (b) pid for chicken. Although not shown, we examined plots for other species, which are similar. Plots for ppresent did not obey an immediate pattern
and thus did not lead us to change our predictions. Each cross represents a plotted data point; shown also is the function we used for converting our initial predictions of
pid to our final predictions, as well as the linear fit that would be suitable if our predictions matched the experimental values.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4567

stage using an HMM exactly as described previously but con-
sisting of only two states. We then decompose each region
class further as long as the number of total region classes is less
than the maximum number of region classes.

In detail, at each stage we are faced with decomposing a set
of regions, all of which belong to the same region class; in the

first stage, there is one region consisting of the entire profile.
We construct a simple HMM consisting of two states, which
correspond to two new region classes; the transition probabil-
ities are set as described above. In principle, we can apply any
training algorithm, such as the Baum–Welch or Viterbi train-
ing algorithm (33), to learn the emission probabilities of each

(a)

(b)

Figure 4. Alternative decomposition of the profile into region classes; region classes can be determined from a profile in several ways. Each cross represents a
position in the profile plotted as a point (ppresent, pid). The squares represent the region class values ðppresent, pidÞ, and the lines roughly delineate portions of the plane
that are closest to a particular region class. (a) When the set of region classes is fixed, the resulting decomposition does not always capture the structure of the profile.
In this case, five out of sixteen region classes contain almost no positions and the region class values do not necessarily represent the average profile values of
all positions in the region class. (b) An adaptive decomposition can adjust based on the structure of the profile. Here, only one out of sixteen classes contains few
positions; the remaining can be distributed to help refine the region of space where most points lie. Furthermore, the region class values more accurately represent the
positions in the region class. Note that the goal of this partitioning algorithm is not to cluster points, but to generate a set of region classes that each contain similar
number of positions.

4568 Nucleic Acids Research, 2005, Vol. 33, No. 14

of the two characteristics ppresent and pid. Once we have deter-
mined the values of ppresent and pid for the states in the HMM,
we can apply the Viterbi algorithm as previously described to
partition the original region class into two region classes. We
then decompose each of the two new region classes, stopping
when the total number of region classes reaches a user spe-
cified limit; based on our experience a set of region classes of
cardinality 40 works well in practice.

In practice, learning only the parameter with greater var-
iance before applying the Viterbi algorithm and estimating the
other parameter afterwards seems to give slightly better results
than learning both parameters at once; this is due in large part
to the greater ease in determining the initial parameters of the
training algorithm in this case. Such an approach splits region
classes more evenly, which is our chief goal in this process.

Seed indexing

Once we have the set of regions and region classes, we can
proceed to build the index. Our algorithm must determine for
each region which subset of the candidate set of seeds will be
indexed. Rather than considering each region individually, we
consider each region class individually and index the same
subset of seeds for every region in the same region class. When
it comes time to actually index the set of seeds that has been
assigned to a region class, each region is indexed indepen-
dently; i.e. we never index positions that cause a seed to span
two regions. Our goal is to maximize the expected number of
homologies in the multiple alignment matched to a homologue
in a query.

We must first infer probable locations of homologies in the
alignment, so that such positions can be indexed more aggres-
sively. Our profile is partitioned into a set of regions, not
homologies, and we therefore adjust our profile so that max-
imizing the expected number of regions matched to a homo-
logue in the query approximates the number of homologies
matched between the alignment and the query. The change that
we must make concerns the length of regions; namely, very
long regions are likely to contain more than one homology.

In this case, there should be a reward for matching a long
region to a homologue that is proportional to the expected
number of homologies it contains. In accordance with the
idea in (12) that 64 is a good characteristic length for homo-
logies, we split regions of length longer than 64 into a set of
contiguous regions of size 64; the last region is allowed to be
slightly larger. This enables us to approximate the number of
homologies matched within the original region by the number
of new regions matched to a homologue.

There is only one technical problem with this approach:
having many small regions creates many boundaries between
the regions. As mentioned above, we do not index positions
that cause seeds to span two regions, and, therefore, having
many boundaries can decrease our sensitivity if we are not
careful. We can circumvent this problem by allowing seeds to
span region boundaries if the regions on both sides of the
boundary are part of the same region class. Therefore, for
the rest of this section we consider only the problem of max-
imizing the number of regions in the profile matched to a
homologue in the query, with the understanding that this
approximates the number of homologies matched between
the alignment and the query.

We now begin by describing a general method for solving
the seed assignment problem, and we then introduce a greedy
approximation that we use in practice. To begin, we determine
for each region class and for each number of seeds j the
expected number of regions within that class matched to a
homologue in the query if every position in that region
class indexes the j candidate seeds that optimize the hitting
probability for the region class. We will say that a region class
is assigned j seeds if every region in that class indexes j seeds.
This can be represented as a table with a row corresponding to
each region class and a column corresponding to each possible
subset size. Entry (i, j) represents the expected number of
regions in region class i matched to a homologue if region
class i is assigned j seeds.

We compute this table as follows. For a region class (ppresent,
pid), the probability that a region within that class matches
a homologue is the probability that a homologue exists

Figure 5. High-level outline of our algorithm for decoding the profile. The algorithm we use for decoding the probabilistic profile into a set of regions consists of a
series of recursive stages. At each level, we choose to partition the portion of the profile shown in black into two different region classes that differ either in ppresent or
pid. We then recursively split each of the two classes until we have partitioned the profile into enough different region classes.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4569

multiplied by the conditional probability that a set of seeds
matches the region and its homologue, given that the homo-
logue exists. The former probability can be approximated by
ppresent, which gives the average probability that a typical
region in the region class has a homologue in a query. The
latter is the hitting probability, phit, which we can compute
using dynamic programming. Algorithms for calculating
this (18,20) require that we specify a region length over
which the seeds will be indexed as well as the similarity
level of the region. Because all regions are of approximate
size 64, we can specify the same length for every region;
furthermore, the characteristic pid of a region class approxi-
mates the similarity level of a typical region in the region class.

We fill in the first column of the table by computing for each
region class i the optimal seed. This seed matches any region
in the region class to its homologue with approximate condi-
tional probability p1

hit, given that the homologue exists; the seed
therefore matches each region to a homologue with uncondi-
tional probability ppresent · p1

hit. If the region class has |C|
regions, the seed is expected to match ppresent · p1

hit · |C|
regions to their homologues; we fill in entry (i, 1) with this
value. Next, we fill in successive columns using the greedy
covering procedure described by (20). Briefly, to fill in column
j for a region class i, we compute the optimal set of seeds of
size j by augmenting the optimal set of seeds of size j � 1 with
the seed that optimizes phit given that the previous j � 1 seeds
do not match. This set of seeds matches with probability p

j
hit,

so we fill in the table entry (i, j) with the value ppresent ·
p j

hit · |C|.
Once the table is full, we assign weights and values to each

entry. The weight of entry (i, j) is the total length of all of the
regions in region class i multiplied by j, the number of seeds
corresponding to this entry; this represents the amount of
budget we use by assigning j seeds to region class i. The
value is the entry in the cell, which represents the expected
number of regions in region class i matched to a homologue if j
seeds are indexed. In this manner, each entry can be viewed as
an object of a certain weight and value. Any set consisting of at
most one object from each row in the table specifies a number
of seeds to assign to each region class; if entry (i, j) is selected,
then region class i is assigned j seeds. The sum of the weights
of the objects is equal to the budget used by such an assign-
ment, and the sum of the values of the objects is the expected
number of regions matched. Therefore, such a set of objects
that has maximum value and total weight less than our budget
specifies the optimal set of seeds to index for each region class.

This problem can be solved exactly in time linear in terms of
the size of the database by a solution closely related to that of
the Knapsack Problem (39). In practice, we use a different
algorithm to obtain an approximate solution that is both faster
and allows us to avoid computing the entire table of values,
which is inefficient since we typically index for many region
classes a small subset of the candidate seeds. We define the
density of an object as its value divided by its weight and select
objects in order of decreasing density, disallowing more than
one object from a given row.

In detail, we proceed as follows. In order to choose the set of
objects, we begin with a candidate list of objects correspond-
ing only to the first column in the table. At each step in the
algorithm, we examine the candidate list and select the object
of highest density. If the object we choose corresponds to cell

(i, j), then we remove it from the candidate list and add the
object corresponding to cell (i, j + 1) to the candidate list.
Rather than setting the value of the new object to be the
value in cell (i, j + 1) of the table, though, we set its value
to be the difference between the values in the cell (i, j + 1) and
cell (i, j). Similarly, rather than setting its weight to the total
length of all regions in region class i multiplied by the size of
the seed set, we set its weight to be merely the total length of
the regions.

Viewing this step in terms of seed selection, choosing object
(i, j) corresponds to choosing to index j seeds for each region in
region class i. The value of the object added to the candidate
set corresponds to the additional number of regions matched to
a homologue if j + 1 rather than j seeds are indexed for region
class i, and its weight is the amount of budget used by indexing
one additional seed. This object can only be added after object
(i, j) is added because the first j seeds must be indexed before
seed j + 1 is indexed. If an object cannot be added because its
weight is too high, we remove it from consideration and try
to add the object with the next highest density. We stop this
process right before we exceed our budget.

The quality of this approximation depends on the relative
weights and values of the objects. For instance, if all the
objects are all of similar weight, the algorithm will perform
well since it is exact in the case that all objects have the same
weight. Similarly, if all objects except those with small values
can be chosen without exceeding our budget, the greedy algo-
rithm will perform well because it is not that important which
subset of low valued objects it chooses to fill out the budget. In
our case, we attempt to partition the region classes into roughly
equal sizes, which, in practice, is mostly successful. When
some region classes are very large, they typically contain
regions with many gaps and consequently have low hitting
probabilities. Therefore, in practice either objects of similar
weight fill our entire budget, or we are faced with choosing
between the objects of low values. In both cases our algorithm
works adequately.

RESULTS

Assessment

We evaluated our algorithm on real biological data in an
attempt to assess its performance. For this purpose, we imple-
mented Typhon, a fully functional local alignment tool that
incorporates our indexing algorithm into a framework support-
ing BLAST-like un-gapped and gapped extensions as well as
other options such as extensions of pairs of seeds on the same
diagonal (11). Typhon applies our indexing algorithm to a
database and then scans a query sequence against the database,
looking up every pattern in the candidate set at every position
in the query. A beta version of Typhon is available at http://
typhon.stanford.edu; this website also contains supplementary
information and additional experimental results. We stress that
our focus in this paper is on the indexing algorithm; any seed-
based alignment tool, such as PatternHunter (12) or BLAST
(11), can incorporate the method used in Typhon. Once the
index is built, the local aligner implementation is orthogonal.

Past performance evaluations of spaced seed local align-
ment techniques have focused on sensitivity with respect to the
Smith–Waterman algorithm (18). The implication is that the

4570 Nucleic Acids Research, 2005, Vol. 33, No. 14

http://

performance of an algorithm is directly correlated with the
number of high scoring local alignments that it finds. We
believe that this testing methodology is imperfect because it
does not attempt to evaluate whether alignments are truly
homologous. For example, it is expected to give too much
importance to transposable elements and other repeats in a
genome. A core principle of Typhon is to incorporate
conservation information, which likely indicates homology,
to improve alignment algorithms. Therefore, it is desirable
to evaluate Typhon based on how many true homologies it
can detect between a database and a query.

One means of testing this is to use known homologous
annotations of a database and a query for evaluation purposes;
however, there is a dearth of such data, with exons being an
exception. Unfortunately, increasing our budget does not
allow us to align more exons when considering query species
closely related to our database, as even low budgets capture
almost all exons capable of being aligned.

Therefore, we tested Typhon as follows. We first con-
structed a multiple alignment database using LAGAN (24)
and post-processed it using the refinement techniques of
MUSCLE (40). We then chose three species as query species
and globally aligned each to the database using LAGAN. Parts
of the alignment to which the query aligns without gaps are
likely to be true homologies; while this is not always the case,
we expect it to be a reasonable approximation of the set of
homologies present between the database and the query. To
prune obviously bad alignments, we scored all potential un-
gapped alignments and kept only those with positive scores; to
score alignments, we constructed the consensus sequence from
the database and scored the query against that sequence. While
this pruning step may in principle remove some alignments
that score low overall but have segments that score high,
almost all alignments removed in practice are genuinely
low scoring and are potential misalignments (data not
shown). We kept each remaining un-gapped alignment as a
hypothetical homologous alignment (HHA).

We evaluated the performance of Typhon by locally
aligning each query to the database and determining how
many HHAs were overlapped by at least one resulting local
alignment. Besides approximating the number of homologies
detected, this performance metric is relevant to global
alignment algorithms incorporating an anchoring step
(23,25,28,41), as a high number of potentially true anchors
helps such aligners. We tested un-gapped extensions as well as
gapped extensions for evaluation. The relative performance of
the algorithms in all of the tests we ran was unaffected by the
extension method used; since un-gapped extensions are
somewhat easier to analyze, we report only those results.

The query sequences we used were the CFTR regions of
mouse, pig and fugu obtained from (42). For each query we
tested how many HHAs were identified, and we tested how
many exons were identified for fugu as well. The sequences
included in the multiple alignment were also obtained from
(42) and consisted of baboon, cat, chicken, chimp, cow, dog,
human, mouse, pig and rat; we removed mouse and rat when
testing mouse and pig when testing pig. For a phylogenetic
tree, we used the tree given in (A. Siepel, 2002, http://www.
cse.ucsc.edu/classes/cmps242/Fall02/projects/proj02.html).

We compared the performance of the Typhon indexing
algorithm to the existing scheme that simply indexes every

position in the database with the same set of seeds
(12,17,18,20). We refer to this algorithm as STANDARD.
We did not test Typhon against existing algorithms such as
PatternHunter (12) or Wu-BLAST (Gish, W., 1996–2004)
because, such tests introduce many uncontrolled experimental
variables. For instance, each incorporates optimizations that
are entirely orthogonal to the indexing algorithm used, which
is our chief focus in this paper. Because the code base of
STANDARD is identical to that of Typhon, the only variation
in our experiments was due to the seeding method used.

Note that when indexing a multiple alignment, STAN-
DARD indexes the consensus sequence, rather than simply
indexing the sequence of a certain species. We show below
that STANDARD is significantly more sensitive when index-
ing a multiple alignment than when indexing the closest
species in the alignment to the query, which is by itself a
significant reason to index multiple alignments rather than
individual sequences.

Sensitivity comparison

We tested Typhon versus STANDARD on three query species
for varying values of the budget B as described above; the
database used in these tests was the full multiple alignment.
We used patterns of weight 10 and span 18 as well as patterns
of weight 11 and span 19; these choices for pattern weights
are based on the tests presented in past research on
spaced seeds (12,17–20). To handle low complexity regions
and repeats, we pre-processed the query using DUST
(R. L. Tatusov and D. J. Lipman, unpublished data) and dis-
carded from the index those k-mers occurring more frequently
than 5 SD above the mean. We chose this discarding technique
because we found that it significantly speeds up searches with
no loss in sensitivity. We used a candidate set of seeds of size
15 for Typhon and designed the set of seeds using Mandala’s
greedy covering algorithm (20). When partitioning the profile
into a set of region classes, Typhon used 40 region classes.
Complete specification of the parameters we used for scoring
alignments can be found as supplementary information on our
website.

For a seed based local aligner, the method used to score
alignments is orthogonal to the seeding method. However,
the choice can have an impact on performance, particularly
in the case of aligning a sequence to a multiple alignment. We
focus here on results obtained using consensus scoring, which
constructs from the multiple alignment the consensus
sequence and then scores hits by standard pairwise alignment
scoring. The advantage of this approach is that it allows a
comparison of Typhon to sequence to sequence aligners;
because the scoring is done between the two sequences,
we can use Karlin–Altschul statistics to evaluate the local
alignments (43).

The number of HHAs identified by Typhon and STAN-
DARD as the parameter B is varied is shown for each species
in Table 1; we also show the number of exons identified for
fugu. Note that Typhon permits non-integral values for B. The
number of seed extensions is shown as part of our supplemen-
tary results to confirm that Typhon obtains no advantage over
STANDARD by performing more seed extensions; both
algorithms perform roughly the same number of extensions,
which as expected scales linearly with B. The total number of

Nucleic Acids Research, 2005, Vol. 33, No. 14 4571

http://www

alignments found is not shown but was also roughly the same
for each method for a given B. This is because many align-
ments found by STANDARD are potentially poor multiple
alignments. For example, many alignments for fugu are
gapped in half of the species in the database. Such alignments
can score reasonably well with consensus scoring but are
unlikely to be truly homologous alignments. Indeed, if sum
of pairs scoring is used instead, which is more common when
performing multiple alignments, Typhon finds significantly
more local alignments than STANDARD. Results are
shown as supplementary information on our website.

The results indicate that Typhon achieves the highest gains
in sensitivity for distant species; it performs best for fugu,
where it is more sensitive using a seed weight of 11 for
low budgets than STANDARD using a seed weight of 10.
It is more sensitive than STANDARD for mouse, although
not as dramatically, and it performs the worst on pig, where it
performs roughly the same as STANDARD. This suggests that
Typhon is most effective for queries that are far away from
each species in the multiple alignment. Because pig has a close
relative in cow present in the database, the advantage of
Typhon is diminished; similarly, its advantage for fugu is
greatest because fugu has no close relatives in the alignment.

The reason that Typhon is less sensitive for queries with a
close relative in the database is two-fold. First, the close rela-
tive is likely to dominate the other species in the multiple
alignment, so that the extra information in the multiple align-
ment that Typhon can use is minimal. Second, indexing multi-
ple patterns does not yield a large benefit because one pattern
finds most of the true matches; e.g. in STANDARD, B ¼ 10
identifies 15% more HHAs than B ¼ 1 for mouse but only 2%
more for pig. There is simply not much room for improvement;
Typhon typically achieves sensitivity gains by skipping a
region and reallocating its budget, but for close species
skipping a region is very costly while budget reallocation
yields minimal gains.

We note that for all species, Typhon’s performance advan-
tage is largest when values of B are small. This is important
because large values of B are less useful for large-scale gen-
ome searches, since searches run slower and sensitivity
improvements diminish as B increases. An example of this
can be seen by examining the data for fugu; with a seed weight

of 11 and budget of 1, Typhon is almost as sensitive as STAN-
DARD using a seed weight of 10 and budget of 3. Despite
similar sensitivities, we would expect Typhon to perform
�12 times fewer seed extensions in this case.

Although consensus scoring allows easy comparison to
existing pairwise local aligners, many multiple aligners use
sum-of-pairs scoring to score alignments. We therefore also
tested Typhon using sum-of-pairs scoring. Complete details of
these tests can be found as supplementary information on our
website, but we summarize here that with respect to HHAs,
Typhon increases its advantage over STANDARD for mouse
and fugu queries, while the relative performance of the two
methods remains roughly the same with pig. In addition, as
mentioned above, Typhon finds significantly more alignments
in total than STANDARD. This is encouraging, as high sum of
pairs scores indicate similarity to many species, unlike high
consensus scores. Complete analysis of scoring schemes in a
local aligner is a topic for further research, but our results
indicate that Typhon is effective using either consensus,
sum or pairs scoring.

Finally we briefly mention an example of how seeds are
distributed among region classes. With mouse as a query and a
budget of 2, Typhon allocates between 0 and 5 seeds to each
region. There is a high correlation between ppresent and the
number of seeds allocated, while the pid value has secondary
effects. In some cases, lower values of pid cause more seeds to
be allocated even in the face of lower ppresent; once region
classes with high pid values receive a moderate number of
seeds, allocating additional seeds leads to diminishing returns.
A plot of the number of seeds allocated for each region class is
shown as supplementary information on our website.

Analysis of database types

Suppose that we have the genomes of several mammals and we
have just sequenced a new species. A common next step might
be to align the new species to the sequences we already
have. Currently, one way of doing so might be to use a
local aligner to align the newly sequenced species to the
human sequence, due to the importance and sequence quality
of the human genome. Another method might use the closest
available relative of the query as a database. However, if

Table 1. Sensitivity comparison of indexing algorithms

Budget w ¼ 10 w ¼ 11
Fugu Mouse HHAs Pig HHAs Fugu Mouse HHAs Pig HHAs
HHAs Exons HHAs Exons
S T S T S T S T S T S T S T S T

1 56 68 57 74 2020 2137 6006 5998 48 64 46 69 1856 2060 5930 5949

1.5 – 69 – 75 – 2240 – 6049 – 65 – 71 – 2158 – 6027

2 61 69 65 76 2190 2259 6074 6079 51 65 52 72 2089 2208 6044 6034
3 66 69 70 77 2258 2295 6089 6086 56 67 61 74 2186 2248 6067 6079

5 68 69 72 77 2302 2325 6104 6096 61 67 67 75 2256 2286 6083 6084

7 68 69 75 77 2324 2339 6121 6098 63 67 70 75 2283 2312 6105 6089
10 69 69 76 77 2338 2346 6135 6115 66 67 74 75 2301 2320 6118 6092

Shown here are sensitivity results for mouse, fugu and pig using an alignment of baboon, cat, chicken, chimp, cow, dog, human, mouse, pig and rat as a database. For
STANDARD and Typhon the number of HHAs overlapped by an alignment is shown for various values of B, the average number of seeds indexed at each position. The
columns labeled S show results for STANDARD while the columns labeled T show results for Typhon. For each test the best performing method is shown in bold; we
tested seed weights of 10 and 11. HHAs were generated as described in the text by eliminating corresponding annotations with consensus scores<0 There were in total
10 801 HHAs that could potentially be identified for mouse, 852 for fugu and 11 873 for pig. There were 116 exons that could be identified for fugu.

4572 Nucleic Acids Research, 2005, Vol. 33, No. 14

we have a reference alignment of the already sequenced mam-
mals, it is worthwhile to ask if we can improve sensitivity by
aligning the new species directly to the multiple alignment.
In other words, do multiple alignment databases allow search
sensitivities greater than those permitted by sequence
databases, irrespective of the indexing algorithm used?

To address this question, we tested aligning each query
sequence to human as well as to its closest relative using
STANDARD; for mouse and fugu it happens that the closest
relative in our alignment is human. Because the human
sequence is much shorter than the full alignment, the align-
ment database we used for comparison consisted of the full
alignment projected to include only columns un-gapped in
human. We tested STANDARD and Typhon on this projected
database using consensus scoring to allow direct comparisons
to the method that indexes only a sequence. The results are
shown in Table 2.

The first observation we make is that the two methods that
index the multiple alignment are indeed more sensitive than
the method that indexes only a sequence. This suggests that,
regardless of the indexing method used, using a multiple align-
ment as a database can boost search sensitivity.

We next observe that, in these tests, Typhon maintains most
of its performance advantage over STANDARD, particularly
in the case of small budgets. Some degradation is expected
because the filtering of columns that are gapped in human
should have some overlap with the filtering performed by
Typhon.

For mouse and pig, the number of identified HHAs in these
tests is larger than the number identified in the tests involving
the full alignment. This appears to be due to many annotations
that are far apart in the full alignment but are joined in the
projected alignment. We refrain from stating that if this indi-
cates that it is better to index the projected alignment than the
full alignment, as it may be an artifact of the manner in which
the alignment is constructed or the quality of the sequences in

the alignment. At any rate, an examination of the results for
fugu shows that the projected alignment does not always
uncover more HHAs.

Performance comparison

To ensure that Typhon is a practical algorithm, we ran some
tests to measure its running time relative to STANDARD. The
running time consists of two components: time spent building
the index and time spent scanning the index. To measure both
of these, we recorded the CPU time spent building and
scanning the index for the tests using mouse as a query
with consensus scoring. We ran two tests with seed weight
of 10; one used the human sequence and the projected align-
ment as databases, and the other used the full alignment as a
database. The tests were run on a 2.8 GHz Pentium 4 processor
with 2 GB of RAM.

The results of these tests are shown in Figure 6. In the case
of the full alignment Typhon runs faster, and in the case of the
smaller database STANDARD performs better. As one might
expect, these differences are based almost entirely on the
different number of seed extensions performed by each
algorithm; this is also evident from Figure 6. Running
times are therefore extremely data dependent and difficult
to gauge accurately from simple tests. Our chief point
here is that Typhon does not incur a major performance over-
head relative to STANDARD. We also stress that Typhon is
still a beta version implementation; careful optimizations are
almost certainly possible and will most likely improve the
performance of Typhon. In addition, as noted in (20), the
overhead of scanning multiple seeds permits substantial par-
allelization, which may eliminate much of the overhead
Typhon faces.

Typhon does take longer to build the index than STAN-
DARD. Our tests showed that the running times of both algo-
rithms scale roughly linearly with the size of the database,

Table 2. Sensitivity comparison of databases

Budget Fugu Mouse HHAs Pig HHAs
HHAs Exons
H S T H S T H S T H C S T

w ¼ 10
1 57 58 61 54 56 65 2771 3151 3298 7166 8651 8709 8709

1.5 – – 69 – – 71 – – 3473 – – – 8715

2 64 63 71 64 64 74 3045 3450 3528 7361 8721 8751 8749
3 69 69 72 69 70 75 3140 3573 3630 7439 8748 8760 8761

5 71 71 72 70 72 77 3262 3661 3691 7499 8765 8771 8772

7 71 71 72 72 75 77 3303 3708 3719 7520 8771 8778 8775
10 72 72 72 74 76 77 3328 3727 3735 7554 8775 8789 8790

w ¼ 11
1 48 49 56 48 47 58 2522 2909 3062 6755 8492 8665 8656
1.5 – – 65 – – 64 – – 3297 – – – 8666

2 52 52 65 54 52 69 2850 3286 3379 6976 8576 8734 8731
3 58 59 68 61 61 73 3013 3431 3497 7145 8646 8750 8749
5 64 64 69 66 67 75 3131 3545 3591 7355 8723 8759 8759

7 66 66 70 68 70 75 3215 3610 3644 7382 8735 8775 8771
10 69 69 70 71 74 75 3271 3665 3688 7405 8739 8782 8773

For mouse, fugu and pig, we examined the relative performances of sequence and multiple alignment databases. The multiple alignment used consisted of baboon, cat,
chicken, chimp, cow, dog, human, mouse, pig and rat. The sequence database consisted solely of the closest sequence in the alignment to the query, and the multiple
alignment database consisted of the multiple alignment projected to remove columns gapped in the closest sequence. Columns labeled H present results using
STANDARD with human as the database, C present results using STANDARD with cow as the database, S present results using STANDARD with the projected
alignment as the database, and T present results using Typhon with the projected alignment as the database. The testing methodology was the same as that used for tests
comparing sensitivity results on the full alignment. There were in total 10 678 HHAs that could potentially be identified for mouse, 848 for fugu and 11 094 for pig.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4573

with Typhon running �3 to 4 times slower. However, for large
sequences, build times are typically much less than scan times,
which are quadratic in the size of the sequences. Furthermore,
it is likely that the cost of building the index can be in some
cases amortized over many query sequences, just as can be the
cost of designing optimal spaced seeds (12). We note that our
index is more query specific than standard spaced seed
indexes; such indexes are optimized only for a specific
similarity level while our indexes are optimized for a given
phylogenetic tree. However, if many queries admit the same
tree structure and only alter branch lengths, which will
often happen if all are distant from the species in the database

(e.g. chicken and fugu queries to mammalian genomes), our
index is less restricted. In such cases only the absolute values
of pid change; this alters the index to a much lesser extent than
do cases in which the relative values of pid or ppresent change
across regions.

We finally note that the space requirements of Typhon are
identical to STANDARD except for an overhead for each
pattern in the candidate set. This overhead is present due to
the need for a lookup table for each such pattern; the size of
this table is independent of database size. Full performance
results are available as supplementary information on our
website.

(a)

(b)

4574 Nucleic Acids Research, 2005, Vol. 33, No. 14

DISCUSSION

In this paper we have argued in favor of using a multiple
alignment to improve seeded local alignment techniques.
Our results indicate that not only can multiple alignment
databases increase search sensitivity irrespective of the search
algorithm used, but also they permit improved search

algorithms. We have presented an algorithm encapsulated
in Typhon, which is a step in this direction.

We believe that our results are particularly relevant given
the current trends in comparative genomics. In the near future,
a common task will be to search a database of genomes, such
as those consisting of mammals or flies, with a query set of
sequences of interest. Such queries may contain a newly

(c)

(d)

Figure 6. Running time and seed extension comparison of indexing algorithms. The performance of both Typhon and STANDARD is highly data dependent. Above
are plots of scan times as database size is varied. In all tests using alignment databases the alignment consisted of baboon, cat, chicken, chimp, cow, dog, human and
pig. We used mouse as a query and seed weights of 10. Tests were run on a 2.8 GHz Pentium 4 processor with 2 GB of RAM. (a) CPU time spent scanning the index and
(b) seed extensions performed when using the full alignment (4.2 Mbp) as an index are shown, as well as (c) CPU time spent scanning the index and (d) seed
extensions performed when using the projected alignment (1.8 Mbp) as an index. Shown also is performance while scanning a database consisting of solely the human
sequence, which is the same length as the projected alignment.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4575

sequenced mammalian genome or a set of fly genes and may
not have a close relative in the database. Our results indicate
that instead of indexing a single representative species from
the database, it is more effective to directly query an alignment
of the database species. Even if our dynamic indexing algo-
rithm is not employed, reconstructing the consensus sequence
of the multiple alignment at the point where the query’s
immediate ancestor meets the phylogenetic tree is likely to
improve sensitivity.

As our results show, by indexing a multiple alignment we
can obtain sensitivities comparable to existing sequence local
aligners while performing many fewer seed extensions. This
combined improvement of the sensitivity/speed trade-off can
be quite significant, especially across a whole-genome search
where local alignment extensions consume the majority of the
running time. For instance, suppose we use the sequence of
mouse as a query mammal and the sequence of rat is not
available in our database. If we use a Typhon-generated align-
ment database consisting of on average two weight-11 seeds
per position, we can perform searches in no more than half the
time than can an algorithm that searches a human database
consisting of any number of weight-10 seeds per position; this
performance improvement comes at no cost with respect to
sensitivity.

Because our index is specific to a given query species, our
method is most applicable in the case where query sequences
are large, such as a newly sequenced whole-genome. In parti-
cular, if the tree consisting of the query species and the species
in the database changes, we must rebuild the index for optimal
performance. However, as mentioned above, if two species
cause the tree to change only with respect to branch lengths but
not structurally, our algorithm must only reconsider the simi-
larity level between the query and the index. This situation can
be common and affects our index much less severely than do
cases in which the entire tree structure changes. In future work,
it will be useful to examine the exact degree to which the index
is affected by non-structural changes in the phylogenetic tree.

Our work also brings to light several directions for future
research. Most notably, our method for constructing the prob-
abilistic profile can be formalized and expanded upon. The
interplay of the probabilities ppresent and pid decoded from the
multiple alignment can have dramatic effects on performance,
and improvements in obtaining this information will almost
certainly improve the results of our algorithm further. It will be
interesting to explore with simulations or real data how these
values will change if the species in the multiple alignment are
varied. Adjacent to these issues is the question of how best to
deal with possible errors in the multiple alignment that may
mislead Typhon; it may be possible to detect and correct for
such problems with a more flexible algorithm.

In addition, many opportunities exist for algorithmic
improvements. First of all, more care in choosing the candidate
set of spaced seeds may result in increased sensitivity. It is
possible that using higher-order models for seed evaluation as
previously suggested (19) may confer a benefit, especially
since the multiple alignment may yield information useful
in constructing a model of sequence similarity. In addition,
it may be beneficial to use the multiple alignment to identify
conserved positions in the alignment and treat those differently
than less conserved positions; vector seeds (22) may be rele-
vant here due to their ability to weight different positions in a

seed differently. This would allow seeds to change on a
position-by-position basis, as opposed to a region-by-region
basis; an intermediate idea might be to allow the set of candi-
date seeds to vary on a region-by-region basis, rather than
fixing the candidate set for all regions. Finally, our method of
indexing a multiple alignment by using only consensus char-
acters is restrictive. For instance, if a position has equal prob-
abilities of 2 nucleotides, it might be beneficial for multiple
seeds indexed at that position to incorporate different nucleo-
tides.

Based on the results of this paper, we believe that a com-
plete examination of all issues relevant to the task of indexing
a multiple alignment will be fruitful. At this stage in time, our
results indicate that Typhon is an attractive alternative to
existing local aligners that index sequence databases. Further-
more, the opportunity for future algorithmic developments
appears large. We feel that as more sequencing data becomes
available, tools for querying multiple alignment databases will
become increasingly important.

ACKNOWLEDGEMENTS

We thank George Asimenos and Antal Novak for helpful dis-
cussions and aid with code design, as well as Arend Sidow for
helpful discussions. We also thank two anonymous referees for
comments that resulted in an improved manuscript. This work
was supported in part by NIH grant U01-HG003162. J.F. was
supported in part by an SGF fellowship. S.B. acknowledges
support from the NSF CAREER Award and the Alfred
P. Sloan Fellowship. Funding to pay the Open Access publica-
tion charges for this article was provided by NIH grant
U01-HG003162.

Conflict of interest statement. None declared.

REFERENCES

1. Cooper,G.M., Brudno,M., Stone,E.A., Dubchak,I., Batzoglou,S. and
Sidow,A. (2004) Characterization of evolutionary rates and constraints in
three mammalian genomes. Genome Res., 14, 539–548.

2. Kent,W.J., Baertsch,R., Hinrichs,A., Miller,W. and Haussler,D. (2003)
Evolution’s cauldron: duplication, deletion, and rearrangement in the
mouse and human genomes. Proc. Natl Acad. Sci. USA, 100,
11484–11489.

3. Pevzner,P. and Tesler,G. (2003) Genome rearrangements in mammalian
evolution: lessons from human and mouse genomes. Genome Res.,
13, 37–45.

4. Schwartz,S., Kent,W.J., Smit,A., Zhang,Z., Baertsch,R., Hardison,R.C.,
Haussler,D. and Miller,D. (2003) Human-mouse alignments with
BLASTZ. Genome Res., 13, 103–107.

5. Waterston,R.H., Lindblad-Toh,K., Birney,E., Rogers,J., Abril,J.F.,
Agarwal,P., Agarwala,R., Ainscough,R., Alexandersson,M., An,P. et al.
(2002) Initial sequencing and comparative analysis of the mouse
genome. Nature, 420, 520–562.

6. Hillier,L.W., Miller,W., Birney,E., Warren,W., Harsison,R.C.,
Ponting,C.P., Bork,P., Burt,D.W. et al. (2004) Sequence and comparative
analysis of the chicken genome provide unique perspectives on vertebrate
evolution. Nature, 432, 695–716.

7. Sharan,R., Ideker,T., Kelley,B.P., Shamir,R. and Karp,R.M. (2004)
Identification of protein complexes by comparative analysis of yeast and
bacterial protein interaction data. In Proceedings of the Eighth Annual
International Conference on Computational Molecular Biology
(RECOMB), vol. 8, San Diego, CA. ACM Press, New York, NY,
pp. 282–289.

8. The ENCODE Project Consortium. (2004), The ENCODE Project.
Science, 306, 636–640.

4576 Nucleic Acids Research, 2005, Vol. 33, No. 14

9. Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein
similarity searches. Science, 227, 1435–1441.

10. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

11. Altschul,S.F., Madden,T.L., Schaeffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids Res.,
25, 3389–3402.

12. Ma,B., Tromp,J. and Li,M. (2002) PatternHunter: faster and more
sensitive homology search. Bioinformatics, 18, 440–445.

13. Kent,W.J. (2002) BLAT–The BLAST-like alignment tool. Genome Res.,
12, 656–664.

14. Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

15. Slater,G.S. and Birney,E. (2005) Automated generation of heuristics for
biological sequence comparison. BMC Bioinformatics, 6, 31.

16. Brown,D.G., Li,M. and Ma,B. (2004) A tutorial of recent developments in
the seeding of local alignment. J. Bioinform. Comput. Biol., 2,
819–842.

17. Buhler,J., Keich,U. and Sun,Y. (2003) Designing seeds for similarity
search in genomic DNA. In Proceedings of the Seventh Annual
International Conference on Computational Molecular Biology
(RECOMB), vol. 7, Berlin, Germany. ACM Press, New York, NY,
pp. 67–75.

18. Li,M., Ma,B., Kisman,D. and Tromp,J. (2003) PatternHunter II: highly
sensitive and fast homology search. J. Bioinform. Comput. Biol., 2,
417–439.

19. Brejova,B., Brown,D.G. and Vinar,T. (2004) Optimal spaced seeds
for homologous coding regions. J. Bioinform. Comput. Biol., 1, 595–610.

20. Sun,Y. and Buhler,J. (2004) Designing multiple simultaneous seeds
for DNA similarity search. In Proceedings of the Eighth Annual
International Conference on Computational Molecular Biology
(RECOMB), vol. 8, San Diego, CA. ACM Press, New York, NY,
pp. 76–84.

21. Choi,K.P. and Zhang,L. (2004) Sensitivity analysis and efficient method
for identifying optimal spaced seeds. Journal of Computer and System
Sciences, 68, 22–40.

22. Brejova,B., Brown,D.G. and Vinar,T. (2003) Vector seeds: An extension
to spaced seeds allows substantial improvements in sensitivity and
specificity. In Proceedings of WABI (Workshop on Algorithms in
Bioinformatics), vol. 2812, Budapest, Hungary, Springer-Verlag,
pp. 39–54.

23. Brudno,M., Do,C.B., Cooper,G.M., Kim,M.F., Davydov,E., Green,E.D.,
Sidow,A. and Batzoglou,S. NISC Comparative Sequencing Program.
LAGAN and Multi-LAGAN: efficient tools for large-scale multiple
alignment of genomic DNA. Genome Res., 13, 721–731.

24. Blanchette,M., Kent,W.J., Riemer,C., Elnitski,L., Smit,A.F.,
Roskin,K.M.,Baertsch,R.,Rosenbloom,K.,Clawson,H.,Green,E.D.etal.
(2004) Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res., 14, 708–715.

25. Bray,N. and Pachter,L. (2004) MAVID: constrained ancestral alignment
of multiple sequences. Genome Res., 14, 693–699.

26. Raphael,B., Zhi,D., Tang,H. and Pevzner,P. (2004) A novel method for
multiple alignment of sequences with repeated and shuffled elements.
Genome Res., 14, 2336–2346.

27. Loots,G.G. and Ovcharenko,I. (2004) rVista 2.0: evolutionary analysis
of transcription factor binding sites. Nucleic Acids Res., 32, W217–W221.

28. Batzoglou,S., Pachter,L., Mesirov,J.P., Berger,B. and Lander,E.S. (2000)
Human and mouse gene structure: comparative analysis and application
to exon prediction. Genome Res., 10, 950–958.

29. Korf,I., Flicek,P., Duan,D. and Brent,M.R. (2001) Integrating genomic
homology into gene structure prediction. Bioinformatics, 17, S140–S148.

30. Simon,A., Stone,E.A. and Sidow,A. (2002) Inference of functional
regions in proteins by quantification of evolutionary constraints.
Proc. Natl Acad. Sci. USA, 99, 2912–2917.

31. Gribskov,M., McLachlan,A.M. and Eisenberg,D. (1987) Profile
Analysis: detection of distantly related proteins. Proc. Natl Acad. Sci.
USA, 84, 4355–4358.

32. Pietrokovski,S. (1996) Searching databases of conserved sequence
regions by aligning protein multiple-alignments. Nucleic Acids Res., 24,
3836–3845.

33. Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis, 1st edn. Cambridge University Press, Cambridge, UK.

34. Kimura,M. (1980) A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide sequences.
J. Mol. Evol., 16, 111–120.

35. Felsenstein,J. (1981) Evolutionary trees from DNA sequences: a
maximum likelihood approach. J. Mol. Evol., 17, 368–376.

36. Li,J. and Miller,W. (2002) Significance of inter-species matches when
evolutionary rate varies. In Proceedings of the Sixth Annual International
Conference on Computational Biology (RECOMB), vol. 6, Washington,
DC, USA. ACM Press, New York, NY, pp. 216–224.

37. Boggess,A. and Narcowich,F.J. (2001) First Course in Wavelets with
Fourier Analysis, 1st edn. Prentice Hall, Upper Saddle River, NJ.

38. MacQueen,J.B. (1967) Some methods for classification and analysis of
multivariate observations. In Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, Berkeley, CA, University of
California Press, Berkeley, CA, pp. 281–297.

39. Kleinberg,J. and Tardos,E. (2005) Algorithm Design, 1st edn. Addison
Wesley, San Francisco, CA.

40. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Res., 32,
1792–1797.

41. Delcher,A.L., Phillippy,A., Carlton,J. and Salzberg,S.L. (2002) Fast
algorithms for large-scale genome alignment and comparison. Nucleic
Acids Res., 30, 2478–2483.

42. Thomas,J.W., Touchman,J.W., Blakesley,R.W., Bouffard,G.G.,
Beckstrom-Sternberg,S.M., Margulies,E.H., Blanchette,M., Siepel,A.C.,
Thomas,P.J., McDowell,J.C. et al. (2003) Comparative analyses of
multi-species sequencing from targeted genomic regions. Nature, 424,
788–793.

43. Karlin,A. and Altschul,S.F. (1990) Methods for assessing the statistical
significance of molecular sequence features by using general scoring
schemes. Proc. Natl Acad. Sci. USA, 87, 2264–2268.

Nucleic Acids Research, 2005, Vol. 33, No. 14 4577

