
Identification of RNA editing sites in the SNP database
Eli Eisenberg1, Konstantin Adamsky2, Lital Cohen2, Ninette Amariglio2,

Abraham Hirshberg3, Gideon Rechavi2 and Erez Y. Levanon2,4,*

1School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, TAU, 2Department of
Pediatric Hemato-Oncology, Safra Children’s Hospital, Sheba Medical Center and Sackler School of Medicine,
3Department of Oral Pathology, School of Dental Medicine, Tel Aviv University, Tel Aviv 69978, Israel and
4Compugen Ltd, 72 Pinchas Rosen Street, Tel Aviv 69512, Israel

Received July 7, 2005; Revised and Accepted July 29, 2005

ABSTRACT

The relationship between human inherited genomic
variations and phenotypic differences has been the
focus of much research effort in recent years. These
studies benefit from millions of single-nucleotide
polymorphism (SNP) records available in public data-
bases, such as dbSNP. The importance of identifying
false dbSNP records increases with the growing role
played by SNPs in linkage analysis for disease traits.
In particular, the emerging understanding of the
abundance of DNA and RNA editing calls for a careful
distinction between inherited SNPs and somatic DNA
and RNA modifications. In order to demonstrate
that some of the SNP database records are actually
somatic modification, we focus on one type of these
modifications, namely A-to-I RNA editing, and present
evidence for hundreds ofdbSNP records that areactu-
ally editing sites. We provide a list of 102 RNA editing
sites previously annotated in dbSNP database as
SNPs, and experimentally validate seven of these.
Interestingly, we show how dbSNP can serve as a
starting point to look for new editing sites. Our
results, for this particular type of RNA editing, dem-
onstrate the need for a careful analysis of SNP data-
bases in light of the increasing recognition of the
significance of somatic sequence modifications.

INTRODUCTION

The genomes of different individuals typically differ in
millions of nucleotides, mostly due to genetically inherited
single-nucleotide polymorphisms (SNPs). SNPs are extens-
ively studied in search of statistically significant associations
between a particular allele of an SNP and certain phenotypes
(usually diseases). SNPs associated with a phenotype can be

used to pinpoint candidate causative genes, or as genetic
markers that alter the risk for disease occurrence, outcome,
response to specific treatments and side effects (1). The power
of association studies is a function of the number of SNPs
used and of their quality (i.e. the likelihood of the SNP locus
actually being polymorphic in the population under study).

The largest depository of SNP is dbSNP (2), in which
virtually all known SNPs are deposited. Most of the SNPs
recorded in dbSNP were found in the course of sequencing
the human genome, by algorithmic search for single nucleotide
differences between aligned sequence reads of the genomic
sequence. This approach has been successful in identifying
common SNPs, namely those with a frequency >1–5%, in a
diverse panel of individuals representative of different popu-
lations. This approach has concentrated on developing a dense
map, with uniform coverage across the existing draft of the
human genome (1). In addition, many other dbSNP records
come from other origins and are of varying accuracy. Sources
for erroneous SNP identifications include sequencing errors,
mutations and duplications. A recent confirmation study has
reported that a large fraction (>40%) of SNPs in these data-
bases could not be confirmed, meaning that they are either
of very low frequency, mis-mapped, or not polymorphic
at all (3).

In addition, SNPs were identified using expressed data:
aligning millions of available expressed sequence tags (ESTs),
one can search clusters of ESTs for possible SNPs. Consistent
variation between expressed sequences and the human genome
was interpreted as genomic SNP, resulting in tens of thousands
of dbSNP records in human (4–6). More recently, analyses of
full-length human mRNAs have yielded more putative SNPs
(7). These methods have yielded only tens of thousands of new
SNPs, not a significant number compared with the millions of
records in dbSNP. However, their importance lies in the fact
that the resulting SNPs have an increased likelihood of resid-
ing in a coding region or untranslated region (UTR) of a gene.
SNPs in these regions, or generally in regulatory and expressed
regions, are considered much more important than those in
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non-functional regions (i.e. most of the SNPs) that are
considered of low probability to contribute to phenotype.
Large-scale EST searches for SNPs were also utilized in
other organisms, such as rat (8) and Arabidopsis thaliana
(9). This method is the most efficient method for the identi-
fication of SNPs in organisms that do not have a sequenced
genome (10) and was employed to many organisms, e.g. the
Bombyx mori silkworm (11).

Recently, much interest has been focused on enzymatic
modification of DNA and RNA sequences (DNA/RNA
editing), such as cytosine deamination of DNA by AID (12),
cytosine deamination of RNA and DNA by the APOBEC
family (13,14), and adenosine deamination of RNA by
ADARs. It becomes clear that these are much more common
than previously believed, but the full scope of these phenom-
ena is yet to be exposed. The abundance of DNA/RNA
editing raises the possibility that some of the observed
sequence variations are actually DNA/RNA editing sites
rather than genetically inherited SNPs. In the following, we
explore this possibility in conjunction with one of the better-
characterized types of such modification, namely A-to-I RNA
editing.

A-to-I RNA editing is the modification of adenosine to
inosine in precursor messenger RNAs, catalyzed by members
of the double-stranded-RNA (dsRNA) specific ADAR family
(15). ADAR-mediated RNA editing is essential for the devel-
opment and normal life of both invertebrates and vertebrates
(16–18). Altered editing patterns were associated with inflam-
mation (19), epilepsy (20), depression (21), amyotrophic
lateral sclerosis (22) and malignant gliomas (23). In a few
known examples, editing changes the translated protein and
its functionality. However, this may not be the primary role of
ADARs, as most documented editing events occur within
UTRs and other non-coding regions (24). These editing events
may affect splicing, RNA localization, RNA stability and
translation (25), but full understanding of the role of editing
in these regions is yet elusive. Several groups have recently
reported the identification of abundant A-to-I editing in
human, affecting thousands of genes (26–29). Most of these
editing sites reside in Alu elements within UTRs. Alu elements
are short interspersed elements, typically 300 nt long, which
account for >10% of the human genome (30). The abundance
of A-to-I RNA editing sites and the fact that the EST signature
of an SNP is virtually the same as the EST signature of
an editing site naturally lead to the hypothesis that some of
the SNPs predicted by EST data are actually RNA editing
sites. In the following, we describe an initial search for editing
sites that were deposited in dbSNP as SNPs. We find over a
hundred such sites and claim that the actual number is much
higher.

MATERIALS AND METHODS

Experimental protocol

Total RNA and genomic DNA (gDNA) were isolated simul-
taneously from the same tissue sample using TriZol reagent
(Invitrogen, Carlsbad, CA). We used tumor and normal
samples of lung and oral cavity carcinoma.

The total RNA underwent oligo(dT)-primed reverse tran-
scription using M-MLV Reverse Transcriptase (Invitrogen)

according to the manufacturer’s instructions. The cDNA
and gDNA (at 20 ng) were used as templates for PCRs. We
aimed at high sequencing quality and thus amplified rather
short genomic sequences (�200 nt). The amplified regions
chosen for validation were selected only if the fragment to
be amplified maps to the genome at a single site. PCRs were
carried out using Abgene ReddyMix� kit (Takara Bio, Shiga,
Japan) using the primers and annealing conditions as detailed
in the following. PCR fragments were purified from agarose
gel using QIAquick Gel Extraction Kit (Qiagen) followed by
sequencing using ABI Prism 3100 Genetic Analyzer (Applied
Biosystems).

We have used build 119 (January 2004) of dbSNP.

RESULTS

dbSNP (build 119) consists of a total of 6 134 414 non-
redundant human RefSNP clusters. Most of these were valid-
ated by comparing DNA of different individuals, but for
30 879 clusters the only evidence of polymorphism is mis-
matches between DNA and expressed data (expressed
SNPs). A total of 5 672 327 of the SNPs (92.5%) are a
simple single-nucleotide substitution, including virtually all
expressed SNPs (30 774; 99.7%).

However, these mismatches between DNA and RNA that
were interpreted as expressed SNPs can potentially be not a
result of an SNP but rather a signature of DNA or RNA editing.
In particular, sequences undergoing A-to-I RNA editing will
read G instead of the genomic A, and this could be erroneously
identified as an A/G SNP. Although the expressed SNPs are
only a small fraction (0.5%) of the total number of SNPs, they
are a significant fraction (12%) of SNPs in coding sequences,
including 13% of the non-synonym SNPs. Thus, curation of
this subset of SNPs is of great importance. In order to test the
possibility of editing sites incorrectly reported as SNPs, we
checked for over-representation of A/G-expressed SNPs
within Alu repetitive elements, in which A-to-I RNA editing
is enhanced (26–29).

Figure 1 shows the distribution of the different types of
simple substitution SNPs. A/G SNPs account for 33% of all
single substitution SNPs, and for 35% of single substitution
SNPs within Alu repeats. In contrast, A/G-expressed SNPs are
highly over-represented in Alu repeats, whereas only 27%
of all expressed single-substitution SNPs are of type A/G;
70% of these that reside within an Alu repeat are A/G
SNPs (P-value < 10�100). Although in most cases the mis-
match type of the expressed SNPs is defined according to
the RNA sequence, the annotation of the SNPs from genomic
data does not distinguish between strands. Therefore, it might
be necessary to look at the statistics of A/G and C/T SNPs
combined. These types of SNPs account for 66% of all single
substitution SNPs, and for 69% of single-substitution SNPs
within Alu repeats. In contrast, A/G- and C/T-expressed SNPs
are highly over-represented in Alu repeats, whereas only 59%
of all expressed single-substitution SNPs are of type A/G or
C/T; 86% of these that reside within an Alu repeat are SNPs
of these types (P-value < 10�35). This over-representation of
A/G- and C/T-expressed SNPs within Alu elements suggests
that �20% of the expressed SNPs of these types within Alu
elements are actually not SNPs but rather the result of RNA
editing.
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How can one distinguish between an A-to-I editing site
and an SNP? There are a number of characteristics of editing
that can be used for this purpose: (i) A-to-I editing occurs in
dsRNA regions; (ii) A-to-I editing occurs mainly within Alu
repeats; (iii) A-to-I editing sites tend to cluster and show a
combinatorial nature: different sequences will be edited in
different subsets of the cluster. For example, the genomic
locus shown in Figure 2 includes five different expressed
SNPs that we suspect to be editing sites (we manage to validate
four of them in our specimen). The different transcripts
presented in the figure exhibit nine different combinations
(out of the possible 25 ¼ 32) of adenosines and guanosines
in these five sites. Such a combinatorial behavior is not expec-
ted for SNPs, since the short distance between the sites does
not allow for many recombinations. If one would assume this
diversity to follow from genomic diversity, such a large num-
ber of haplotypes would require assuming the existence of at
least four recombination sites between the five editing sites.
However, it is unlikely to have so many recombination sites
within such a short genomic region.

The above characteristics were used in a recently published
algorithm to search for RNA editing (26). Here, we used
the set of putative editing sites (predicted accuracy > 95%,
experimental validation of a random subset shows accuracy of
�90%) and aligned each predicted editing site against the
database of expressed SNPs using the BLAST algorithm.
We retained only alignments 90 nt or longer with identity
levels higher than 95%. We found 562 expressed SNPs that
were mapped on predicted A-to-I editing sites, a list of which
is given in Supplementary Table 1. As expected for editing
sites, these 562 sites tend to cluster and belong to only 197
different genomic loci. However, as most of these SNPs are

located within Alu elements, only 102 of these SNPs have an
unambiguous mapping onto the genome in dbSNP. The list of
these 102 SNPs is given in Supplementary Table 2. Given the
extremely low false-positive rate of the RNA editing database,
we expect only a few of these 102 sites to be SNPs after all.
For each dbSNP record, the RefSeq sequence onto which the
SNP is mapped (if any) and the location within the RefSeq
sequence are given. In addition, it is indicated whether
the SNP resides within an Alu repeat. Out of the 102 SNPs,
56 are mapped onto a RefSeq sequence—37 of which (66%)
are mapped to the UTR of the RefSeq and the remaining
19 (34%) are located within introns of the RefSeq sequence
(coming either from splice variants not represented in the
RefSeq database, or from pre-mRNA sequences). None of
the 102 SNPs is mapped onto RefSeq coding sequences. A
total of 96 out of the 102 SNPs in the table (94%) are located
within Alu repeats.

In order to validate our results, we chose four transcripts that
contain SNPs from the list of 102 candidates and are relatively
easy to sequence, having a long, unique, flanking region out
of the Alu in the same exon. We then sequenced PCR products
of matching DNA and RNA samples in a number of tissues.
The occurrence of editing was determined by the presence of
an unambiguous trace of guanosine in positions for which the
genomic DNA from the same sample clearly indicated the
presence of an adenosine (Figures 2 and 3). All sites tested
have been shown to be editing sites and not SNPs or somatic
mutations. One of the amplified transcripts included more than
1 SNP in our list, and thus we validated 7 out of the predicted
102 (dbSNP ID numbers: rs1136573, rs3170195, rs3180172,
rs3207022, rs3180175, rs3192564 and rs1057026). In addi-
tion, these experiments have yielded one more false SNP

Figure 1. Distributions of the different types of simple substitution SNPs. (A) All SNPs; (B) SNPs inferred from expressed data only; (C) SNPs within Alu repetitive
elements; (D) SNPs within Alu elements inferred from expressed data only. The enrichment of A/G SNPs in the last panel is attributed to editing sites within
Alu elements that were previously interpreted as SNPs.
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not present in our list: rs3207020. The results for two of these
transcripts are presented in Figures 2 and 3.

DISCUSSION

The above analysis relies on a previously published RNA
editing database (26). This database consist of more than
12 000 putative editing sites, but the actual number of editing
sites in the human genome is probably much higher. Recently,
it is was shown by direct sequencing of 3 Mb of human
brain cDNA that the average editing rate within intronic
and intergenic regions is �1:1000 bp, raising the total number
of potential editing sites in the genome to over a million.

Accordingly, the number of erroneously assigned EST-
based SNPs is probably much higher than the 102 putative
sites we found. Indeed, during our experimental validation
procedure we found more sites, which were previously annot-
ated as expressed SNPs but actually are editing sites, e.g. the
SNP rs3207020 (Figure 2).

The above results demonstrate the effect of one particular
type of sequence modification on dbSNP. Similarly, other
types of RNA editing in the human transcriptome, such as
the C-to-U RNA editing of apoB transcripts by APOBEC-1
(apolipoprotein B mRNA editing catalytic polypeptide 1),
could result in erroneously identified SNPs. There are prob-
ably many more substrates for this enzyme family than the
only one known target, since other members of the family have
yet unknown targets (31,32). The possibility of editing events
of these types being recorded as EST-based SNPs should be
taken into account in future analyses using dbSNP.

Furthermore, dbSNP might be helpful as a starting point for
searching new editing targets. Indeed, in a recent work (33) we
proposed an algorithm to find novel A-to-I editing sites within
the coding sequence and employed it to find four new proteins
affected by editing: BLCAP, FLNA, CYFIP2 and IGFBP7.
Interestingly, all of the new editing sites found were previ-
ously recorded as SNPs in dbSNP (dbSNP IDs: BLCAP,
rs11557677; FLNA, rs3179473; CYFIP2, rs3207362;
IGFBP7, rs1133243 and rs11555284), even though this fact
was not used at all in any stage of the algorithm. All of these
presumed SNPs have no evidence for genomic polymorphisms
and were included in dbSNP based solely on expressed data.
We thus conclude that the erroneously recorded expressed
SNPs could serve as a powerful tool in future studies screening
for RNA editing sites.

On the other hand, for careful genotyping analyses, one
might want to be on the safe side and ignore all SNPs
of expressed origin (or at least remove all A/G and C/T
SNPs). A less drastic solution would be to use the known
properties of editing sites (e.g. they tend to cluster, to appear
in dsRNAs and in Alu repeats) and remove only the expressed
SNPs that satisfy these properties. Such measures would pre-
vent focusing linkage studies on false SNPs, allowing the
finding of more associations between certain disease pheno-
types and true SNPs. These considerations are especially
important for correct definition of haplotype blocks, which
requires accurate sets of SNPs.

DNA editing mechanisms have also attracted much interest
recently. Programmed introduction of uracil into DNA is
induced by AID through targeted cytosine deamination,

Figure 2. Editing sites in the ribosomal protein S19 (RPS19) locus, previously
identified as SNPs. (A) Some of the publicly available expressed sequences that
cover this gene, together with the corresponding genomic sequence. The loca-
tions of the dbSNP SNP records are indicated at the bottom. The editing location
is highlighted in green for non-edited sequences and in red for edited sequences.
(B) Experimental results: sequencing matching human DNA and cDNA RNA
sequences. Editing is characterized by a trace of guanosine (black) in the cDNA
RNA sequence, where the DNA sequence exhibits only adenosine signals
(green). We note that the results show that rs3207020, not found in our set,
is also an editing site rather than an SNP.

Figure 3. An editing site in the eukaryotic translation initiation factor (eIF3k)
locus, previously identified as SNPs. (A) Some of the publicly available
expressed sequences, which cover this gene, together with the correspond-
ing genomic sequence. The location of the dbSNP SNP record is indicated
at the bottom. The editing location is highlighted in green for non-edited
sequences and in red for edited sequences. (B) Experimental results: sequencing
matching human DNA and cDNA RNA sequences from the same source.
Editing is characterized by a trace of guanosine (black) in the cDNA
RNA sequence, where the DNA sequence exhibits only adenosine signals
(green).
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thus triggering multiple pathways for somatic modification of
antibody genes. The resulting U:G lesion can then be repaired
and replicated over, yielding C-to-T and G-to-A transition
mutations (34). Similarly, APOBEC3G can edit not only infec-
tious viral DNA, but also endogenous retroelements: it inhibits
retrotransposition of IAP and MusD elements in mouse by
inducing G-to-A hypermutations in their DNA copies (13).
One should bear in mind that most editing enzymes in
human have yet no known endogenous target, suggesting
that many more editing events are yet to be revealed (14).
These DNA editing events could also be misinterpreted
for SNPs.

The identification of DNA editing sites among the SNPs
poses even a bigger challenge. These sites are modified on the
genomic level; therefore, the experimental distinction between
these and regular SNPs requires sequencing of DNA from
different tissues of the same individual to show that the modi-
fication is tissue dependent. From a bioinformatic point of
view, better characterization of these sites is yet required in
order to design and conduct a systematic search for DNA
editing sites. The extensive activity in this emerging field
promises to provide such information in the coming years.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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