Skip to main content
. 2025 Feb 12;17:1496235. doi: 10.3389/fnagi.2025.1496235

Table 4.

Summary of significant findings from studies using miscellaneous methods to assess connectivity.

1. Mild cognitive impairment (MCI) v. Healthy control (HC)
Authors (Year) Connectivity
approach
Analysis
basis
Recording
context
Significant
bands, network
Group
effects
Ref.
Babiloni et al. (2009) DTF Sensors - avg. regions Rest - EC Theta, alpha1, alpha2, beta1 MCI < HC 3
Bonanni et al. (2021) MI Sensors – pairs, avg. regions Rest - EC 1–100 Hz MCI > HC 13
Cantero et al. (2009b) DTF Source - swLORETA Rest - EC Alpha1 MCI > HC 17
Alpha2 MCI < HC
Crook-Rumsey et al. (2023) SNN Sensors - avg. regions Task - memory, WM SNN connectivity,
# of significant connections
MCI < HC 22
Guo et al. (2021) PEC Source - custom scripts Rest - EC Beta MCI < HC 40
Delta, theta MCI > HC
Koenig et al. (2005) GFS Sensors - global Rest - EC Beta MCI < HC 61
Li et al. (2021) DTF Sensors - NA Rest - EC Theta global DTF, node degree, global efficiency MCI < HC 67
Liu et al. (2012) CMI Sensors - pairs Task - AO Theta NA 68
Movahed and Rezaeian (2022) SL Sensors - pairs Rest - EC Frontal-central, within-frontal, frontal-temporal, central-occipital, within-central MCI < HC 75
Only P3-F7,
P4-Cz
MCI > HC
Núñez et al. (2021) Meta-states
via IACDRP
Source - sLORETA Rest - EC Alpha dwell time; alpha & beta1 modularity MCI < HC 79
Sedghizadeh et al. (2022) Phase-amplitude coupling Sensors - Fz, Cz, Pz OO Theta-gamma, at all three sites MCI > HC 91
Timothy et al. (2017) Recurrence rate from CRQA Sensors - avg. regions Rest - EC Widespread (Task > Rest) MCI > HC 101
Vanneste et al. (2021) PACFC Source - eLORETA Rest - EC Theta-gamma coupling MCI < HC 104
Wen et al. (2014) GSI, GCI, SES Sensors - global Rest - EC GSI alpha MCI < HC 116
GCI alpha, beta1, beta2 MCI < HC
SES alpha MCI < HC
2. Alzheimer’s disease (AD) v. Healthy control (HC)
Authors (Year) Connectivity
approach
Analysis
basis
Recording
context
Significant bands, network Group
effects
Ref.
Babiloni et al. (2009) DTF Sensors - avg. regions Rest - EC Theta, alpha1, alpha2, beta1, beta2 AD < HC 3
Birba et al. (2022) WSMI Sensors – pairs, clusters Rest (NA) 4-10 Hz AD > HC 11
Blinowska et al. (2017) DTF Sensors - pairs Rest - EC Theta, alpha AD < HC 12
Chan et al. (2013) CMI Sensors - pairs Rest - EC, EO, PS 0.5-70 Hz AD < HC 20
Herzog et al. (2022) DTC Source - sLORETA Rest - EC ^Delta, theta, alpha, beta, gamma AD < HC 45
Jeong et al. (2001) CMI Sensors - pairs Rest - EC 1–35 Hz AD < HC 52
Knyazeva et al. (2013) SES Source - LAURA Rest - EC Temporal, frontal AD < HC 60
Posterior AD > HC
Koenig et al. (2005) GFS Sensors - global Rest - EC Delta AD > HC 61
Alpha, Beta AD < HC
Lee et al. (2010) GSI Sensors - global Rest - EC Beta1, beta2, beta3, gamma AD < HC 64
Núñez et al. (2021) Meta-states
via IACDRP
Source - sLORETA Rest - EC Alpha dwell time; alpha, beta1 modularity AD < HC 79
Park and Reuter-Lorenz (2009) GFS Sensors - global Rest - EC Beta1, beta2, beta3, broadband AD < HC 80
Ruiz-Gómez et al. (2019a) AEC Sensors - pairs Rest - EC Alpha, beta1 AD < HC 85
Delta AD > HC
Ruiz-Gómez et al. (2021) CC Source - sLORETA Rest - EC Multiplex clustering coefficient AD < HC 87
Multiplex global strength; path length AD > HC
Song et al. (2018) GCMEV Sensors - NA Rest - EC 0.5–40 Hz AD < HC 93
Tahaei et al. (2012) Synchronization via eigenratio Sensors - NA Rest - EC Delta, alpha, beta, gamma AD < HC 97
Tyrer et al. (2020) DCM Source - multiple spare priors Task - memory 2–30 Hz AD < HC 103
Vyšata et al. (2015) MI Sensors - pairs Rest - EC Frontolateral AD < HC 111
Centroparietal AD > HC
Yu et al. (2018) PDI Sensors - pairs Rest - EC PDI AD > HC§ 120
Zhao et al. (2019) ROLS, DRC, AMM Sensors - pairs Rest - EC, EO <70 yrs.: Nonlinear AMM AD < HC 123
>70 yrs.: Linear AMM, nonlinear AMM;
nonlinear DRC;
# of significant connections
AD > HC

Notes: Group effects based on mean differences. Within-group effects are not shown. †see Supplementary Table S1 for study specifications and technical descriptions; ^some mixed-directionality effects were found within-study, which are categorized by the most consistent pattern; # = number; § Greater values on this metric represent lower connectivity; DBTN = Dynamic brain transition network; avg = averaged; AEC = amplitude envelope correlation; AMM = average mean magnitude; AO = auditory oddball; CC = canonical correlation; CMI = Cross-mutual information; CPSD = cross-power spectral density; CRQA = cross recurrence quantification analysis; DCM = dynamic causal modeling; DRC = dynamic range of connectivity; DTC = dual total correlation; DTF = directed transfer function; EC = eyes closed; EO = eyes open; GCMEV = generalized composite multiscale entropy vector; GCI = global clustering index; GFS = global field synchronization; GSI = global synchronization index; IACDRP = amplitude correlation-derived recurrence plots; MI = mutual information; NA = not available/specified; PACFC = phase-amplitude cross-frequency coupling; OO = olfactory odball; PDI = Permutation disalignment index; PEC = power envelope connectivity; PS = photic stimulation; Ref = reference number; ROLS = Revised orthogonal least squares; SES = S-estimator synchronization; SL = synchronization likelihood; SNN = spiking neural network; WM = working memory; WSMI = weighted symbolic mutual information.