Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Nov 1;175(2):643–647. doi: 10.1042/bj1750643

Subcellular localization of gamma-glutamyltransferase in calf thymocytes.

D Suter, G Brunner, E Ferber
PMCID: PMC1186114  PMID: 33659

Abstract

The subcellular localization of gamma-glutamyltransferase in calf thymocytes was investigated and compared with that of alkaline phosphodiesterase I, alkaline nitrophenyl phosphatase, succinate-tetrazolium oxidoreductase (succinate-INT reductase) and lactate dehydrogenase after two different methods of cell disruption and differential centrifugation. Most of the activity was recovered in the crude membrane fractions (43.0%), but significant amounts co-pelleted with the large-granule (mitochondria) fractions (31%). The specific activity of the gamma-glutamyltransferase in the purified plasma membrane was 30-50 times that of the enzyme in the cell homogenate and had a similar subcellular distribution to the plasma-membrane markers, alkaline phosphodiesterase I and alkaline nitrophenyl phosphatase. It was concluded that gamma-glutamyltransferase was primary a plasma-membrane-bound enzyme, and that its location in other subcellular fractions was probably due to their contamination with plasma-membrane vesicles.

Full text

PDF
643

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abney E. R., Evans W. H., Parkhouse R. M. Location of nucleotide pyrophosphatase and alkaline phosphodiesterase activities on the lymphocyte surface membrane. Biochem J. 1976 Nov;159(2):293–299. doi: 10.1042/bj1590293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allan D., Crumpton M. J. Preparation and characterization of the plasma membrane of pig lymphocytes. Biochem J. 1970 Nov;120(1):133–143. doi: 10.1042/bj1200133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosmann H. B., Hagopian A., Eylar E. H. Cellular membranes: the isolation and characterization of the plasma and smooth membranes of HeLa cells. Arch Biochem Biophys. 1968 Oct;128(1):51–69. doi: 10.1016/0003-9861(68)90008-8. [DOI] [PubMed] [Google Scholar]
  5. Brunner G., Heidrich H. G., Golecki J. R., Bauer H. C., Suter D., Plückhahn P., Ferber E. Fractionation of membrane vesicles. II. A method for separation of membrane vesicles bearing different enzymes by free-flow electrophoresis. Biochim Biophys Acta. 1977 Dec 1;471(2):195–212. doi: 10.1016/0005-2736(77)90250-4. [DOI] [PubMed] [Google Scholar]
  6. Burke M. D., Mayer R. T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos. 1974 Nov-Dec;2(6):583–588. [PubMed] [Google Scholar]
  7. Crumpton M. J., Snary D. Preparation and properties of lymphocyte plasma membrane. Contemp Top Mol Immunol. 1974;3:27–56. doi: 10.1007/978-1-4684-2838-4_2. [DOI] [PubMed] [Google Scholar]
  8. Elce J. S., Broxmeyer B. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J. 1976 Feb 1;153(2):223–232. doi: 10.1042/bj1530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans W. H., Hood D. O., Gurd J. W. Purification and properties of a mouse liver plasma-membrane glycoprotein hydrolysing nucleotide pyrophosphate and phosphodiester bonds. Biochem J. 1973 Dec;135(4):819–826. doi: 10.1042/bj1350819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferber E., Reilly C. E., Resch K. Phospholipid metabolism of stimulated lymphocytes. Comparison of the activation of acyl-CoA:lysolecithin acyltransferase with the binding of concanavalin A to thymocytes. Biochim Biophys Acta. 1976 Sep 21;448(1):143–154. doi: 10.1016/0005-2736(76)90083-3. [DOI] [PubMed] [Google Scholar]
  11. Ferber E., Resch K., Wallach D. F., Imm W. Isolation and characterization of lymphocyte plasma membranes. Biochim Biophys Acta. 1972 May 9;266(2):494–504. doi: 10.1016/0005-2736(72)90105-8. [DOI] [PubMed] [Google Scholar]
  12. Lin C. W., Sasaki M., Orcutt M. L., Miyayama H., Singer R. M. Plasma membrane localization of alkaline phosphatase in HeLa cells. J Histochem Cytochem. 1976 May;24(5):659–667. doi: 10.1177/24.5.58927. [DOI] [PubMed] [Google Scholar]
  13. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  14. Novogrodsky A., Tate S. S., Meister A. gamma-Glutamyl transpeptidase, a lymphoid cell-surface marker: relationship to blastogenesis, differentiation, and neoplasia. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2414–2418. doi: 10.1073/pnas.73.7.2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palekar A. G., Tate S. S., Meister A. Formation of 5-oxoproline from glutathione in erythrocytes by the gamma-glutamyltranspeptidase-cyclotransferase pathway. Proc Natl Acad Sci U S A. 1974 Feb;71(2):293–297. doi: 10.1073/pnas.71.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pellefigue F., Butler J. D., Spielberg S. P., Hollenberg M. D., Goodman S. I., Schulman J. D. Normal amino acid uptake by cultured human fibroblasts does not require gamma-glutamyl transpeptidase. Biochem Biophys Res Commun. 1976 Dec 20;73(4):997–1002. doi: 10.1016/0006-291x(76)90221-7. [DOI] [PubMed] [Google Scholar]
  18. Ruuskanen O. J., Pelliniemi L. J., Kouvalainen K. E. Alkaline phosphatase in differentiating guinea pid thymocytes: an ultracytochemical study. J Immunol. 1975 May;114(5):1611–1615. [PubMed] [Google Scholar]
  19. Schoner W., von Ilberg C., Kramer R., Seubert W. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Eur J Biochem. 1967 May;1(3):334–343. doi: 10.1007/978-3-662-25813-2_45. [DOI] [PubMed] [Google Scholar]
  20. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Blitterswijk W. J., Emmelot P., Feltkamp C. A. Studies on plasma membranes. XIX. Isolation and characterization of a plasma membrane fraction from calf thymocytes. Biochim Biophys Acta. 1973 Mar 29;298(3):577–592. doi: 10.1016/0005-2736(73)90075-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES