Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 May 1;179(2):407–412. doi: 10.1042/bj1790407

Adenosine triphosphate consumption by bacterial arginyl-transfer ribonucleic acid synthetases.

J M Godeau, J Charlier
PMCID: PMC1186638  PMID: 384995

Abstract

ATP consumption by arginyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus has been investigated by the firefly luciferin--luciferase assay. Arginyl-tRNA synthetase from E. coli utilizes ATP only for aminocylation of tRNA with a 1:1 stoicheiometry. In contrast, we have shown an adenosine triphosphatase activity of arginyl-tRNA synthetase from B. stearothermophilus in the absence of tRNAArg. Dowex chromatography revealed the formation of ADP by the thermophile enzyme; under aminoacylation conditions, AMP was also formed in amounts stoicheiometric with arginyl-tRNA formation.

Full text

PDF
412

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRUBAKER L. H., MCCORQUODALE D. J. THE PREPARATION OF AMINO ACID-TRANSFER RIBONUCLEIC ACID FROM ESCHERICHIA COLI BY DIRECT PHENOL EXTRACTION OF INTACT CELLS. Biochim Biophys Acta. 1963 Sep 17;76:48–53. [PubMed] [Google Scholar]
  2. Charlier J., Gerlo E. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine. Eur J Biochem. 1976 Nov 1;70(1):137–145. doi: 10.1111/j.1432-1033.1976.tb10964.x. [DOI] [PubMed] [Google Scholar]
  3. Charlier J., Grosjean H. Isoleucyl-transfer ribonucleic acid synthetase from Bacillus stearothermophilus. I. Properties of the enzyme. Eur J Biochem. 1972 Jan 31;25(1):163–174. doi: 10.1111/j.1432-1033.1972.tb01681.x. [DOI] [PubMed] [Google Scholar]
  4. Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
  5. Godeau J. M. Arginyl-tRNA synthetase from Bacillus stearothermophilus: subunit structure of enzyme. FEBS Lett. 1976 Feb 15;62(2):190–193. doi: 10.1016/0014-5793(76)80050-6. [DOI] [PubMed] [Google Scholar]
  6. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  7. NORRIS A. T., BERG P. MECHANISM OF AMINOACYL RNA SYNTHESIS: STUDIES WITH ISOLATED AMINOACYL ADENYLATE COMPLEXES OF ISOLEUCYL RNA SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Aug;52:330–337. doi: 10.1073/pnas.52.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. STEPHENSON M. L., ZAMECNIK P. C. Purification of valine transfer ribonucleic acid by combined chromatographic and chemical procedures. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1627–1635. doi: 10.1073/pnas.47.10.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Yarus M., Berg P. On the properties and utility of a membrane filter assay in the study of isoleucyl-tRNA synthetase. Anal Biochem. 1970 Jun;35(2):450–465. doi: 10.1016/0003-2697(70)90207-1. [DOI] [PubMed] [Google Scholar]
  10. von der Haar F. Affinity elution as a purification method for aminoacyl-tRNA synthetases. Eur J Biochem. 1973 Apr 2;34(1):84–90. doi: 10.1111/j.1432-1033.1973.tb02731.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES