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Abstract
Deregulation of the insulin-like growth
factor (IGF) axis, including the autocrine
production of IGFs, IGF binding proteins
(IGFBPs), IGFBP proteases, and the
expression of the IGF receptors, has been
identified in the development of hepato-
cellular carcinoma (HCC). Characteristic
alterations detected in HCC and
hepatoma cell lines comprise the in-
creased expression of IGF-II and the
IGF-I receptor (IGF-IR), which have
emerged as crucial events in malignant
transformation and the growth of tu-
mours. Alterations of IGFBP production
and the proteolytic degradation of
IGFBPs resulting in an excess of bioactive
IGFs, as well as the defective function of
the IGF degrading IGF-II/mannose
6-phosphate receptor (IGF-II/M6PR),
may further potentiate the mitogenic
eVects of IGFs in the development of
HCC.
(J Clin Pathol: Mol Pathol 2001;54:138–144)
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Several diVerent growth factors and their
respective receptors have been identified and
may act as positive or negative modulators of
cell proliferation and diVerentiation of malig-
nant cell systems. Among these, the insulin-like
growth factors I and II (IGF-I and IGF-II),
their receptors, and their binding proteins play
an increasingly recognised role, being impli-
cated in tumour formation, growth, and
metastasis in vivo.1 2 During this process, a cru-
cial role has been attributed to the IGF-I
receptor (IGF-IR), which has been shown to
mediate mitogenic signals, to protect from a
variety of apoptotic injuries, and to be
necessary for the transformation of certain
types of cells.3 4 The IGF-II/mannose
6-phosphate receptor (IGF-II/M6PR), how-
ever, is involved in the transport of lysosomal
enzymes, in binding, internalisation, and deg-
radation of IGF-II, as well as in the activation
of the mito-inhibitory transforming growth
factor â (TGF-â),5 and has therefore been
considered to be encoded by a tumour
suppressor gene.6

Within the circulation and tissue compart-
ments, IGFs are bound with high aYnity to a
family of structurally related binding proteins
(IGFBPs).7–9 So far, six distinct IGFBPs have
been characterised, which diVer in molecular

mass, binding properties for IGFs, and post-
translational modifications such as phospho-
rylation and glycosylation.10 Many functions
have been proposed for the IGFBPs, including
carrier proteins in the circulation, storage of
IGFs in specific tissue compartments, inhibi-
tion of IGF action by preventing access to IGF
receptors, or potentiation of the mitogenic
response by providing a stable source of
available growth factor.9 IGFBP-3 is the most
abundant IGFBP in the serum. It forms a ter-
nary complex of 150 kDa with IGF-I and an
acid labile subunit (ALS). The 150 kDa
ternary complex is retained in the plasma and
is a potential reservoir of IGFs in the
circulation. The abundance of the IGFBPs can
be regulated by gene expression and by limited
proteolytic processing. Indeed, a role for
IGFBP proteases in the regulation of IGF
dependent physiological and pathophysiologi-
cal processes has been reported.11

Here, we review the available data on the
expression of the components of the IGF axis
in normal liver. Based on this knowledge,
alterations of the IGF axis during hepatocar-
cinogenesis are summarised and allow insights
into the pathophysiological role of the IGF axis
during this process.

The IGF axis in normal liver
IGF-I

Most of the circulating IGF-I and IGF-II is
produced by the liver, although other tissues
are capable of synthesising these peptides
locally. Hepatic IGF-I production is principally
regulated by growth hormone (GH), whereas
the synthesis of IGF-II is relatively GH
independent.12 The GH/IGF-I axis is the major
regulator of postnatal growth, whereas IGF-II
appears to have an important role during fetal
development. Recent studies showed that liver
specific deletion of the IGF-I gene using the
Cre/loxP recombination system reduced the
serum IGF-I concentration by approximately
75% in mice.13 14 However, the growth rates of
these transgenic animals were not significantly
diVerent when compared with wild-type ani-
mals, suggesting a role of extrahepatic auto-
crine and/or paracrine IGF-I production in
growth regulation. Within adult rat liver, IGF-I
is mainly released from hepatocytes,15–17

whereas the contribution of non-parenchymal
cells to hepatic IGF-I production is less impor-
tant.18 19

IGF-II

IGF-II expression is much higher during fetal
development than in postnatal or adult life. A
distinct activation pattern of four diVerent pro-
moters (P1–P4) correlates with IGF-II expres-
sion during development. Promoters P2, P3,
and P4 are active in the fetal liver, whereas the
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postnatal activities of P2–P4 decrease and P1
becomes dominant.20 IGF-II mRNA expres-
sion was detected in hepatocytes as well as in
non-parenchymal liver cells such as KupVer
cells (KCs), endothelial cells (ECs), and
hepatic stellate cells (HSCs). A switch from the
fetal to the adult IGF-II mRNA profile was
observed in all the diVerent types of liver cell
between days 18 and 21 after birth.21 22 In pri-
mary cultures of adult liver cells, IGF-II
specific mRNA was only just detectable.21 22

IGFBPs
In addition to IGF-I, the liver of adult rats has
been recognised as a major source of circulat-
ing IGFBPs and ALS.8 Several studies have
indicated the production of these proteins in
diVerent hepatic cell populations. Rat hepato-
cytes in primary cultures have been shown to
secrete IGFBP-1, IGFBP-2, IGFBP-4, and
ALS,23–25 whereas IGFBP-3 expression was
found in KCs, ECs, and HSCs only.18 19 26–31

Primary cultures of rat liver cells have been
used for investigations regarding the mech-
anism of regulation of IGFBP and ALS
production. These studies demonstrated that
the regulation of these factors was under the
control of several hormones including insulin.8

In primary cultures of hepatocytes, insulin has
been shown to be a strong inhibitor of
IGFBP-1 and IGFBP-2 expression,30 32 33

whereas that of ALS and IGFBP-430 was
stimulated by insulin treatment. Although
released from diVerent cellular sources within
rat liver, biosynthesis of the individual compo-
nents of the 150 kDa complex was apparently
controlled by the same regulatory mechanism.
Maintenance of cocultures of hepatocytes with
KCs in the presence of cAMP decreased the
biosynthesis of IGFBP-3 (released from KCs)
and ALS (released from hepatocytes) synergis-
tically,19 whereas insulin treatment resulted in a
synergistic stimulation of the biosynthesis of
these components.30 This synergistic regulation
might be facilitated by a cellular interaction
between hepatocytes and KCs because a solu-
ble factor secreted by hepatocytes was neces-
sary for the stimulated IGFBP-3 biosynthesis
in KCs in response to insulin.27 30 However, at
present the nature of this soluble factor is still
unknown.

IGFBP PROTEASES

Conditioned medium from primary cultures of
rat liver cells lacked neutral IGFBP protease
activity, whereas the acidification of the me-
dium resulted in the activation of IGFBP pro-
teases, which could be classified by their pH
optimum and protease inhibitor profile as
acidic precursor forms of aspartyl and cysteine
proteases, probably belonging to the family of
cathepsins.18 19 Under physiological conditions,
it is unlikely that the cell mediated acidification
of the extracellular environment34 is suYcient
to activate secreted procathepsin. However, the
acidic protease activities detected in condi-
tioned medium of liver cells might reflect the
ability of acidic proteases localised in the endo-
somal, cathepsin containing recycling com-
partment35 or in lysosomes to participate in

IGFBP proteolysis. In fact, when cocultures of
hepatocytes with KCs were incubated at
pH 7.4 and 37°C in the presence of iodinated
IGFBP-3, a time dependent disappearance of
intact IGFBP-3 and the generation of several
IGFBP-3 proteolytic fragments of diVerent
sizes was observed.19 This indicated that, after
endocytosis, a cathepsin mediated proteolysis
of IGFBP-3 in intracellular organelles occurs,
accompanied by partial recycling and release of
IGFBP-3 fragments into the extracellular
medium. The process of endocytosis and sub-
sequent proteolytic degradation of IGFBP-3,
as demonstrated in the coculture model with
hepatocytes and KCs, might reflect the capac-
ity of the liver to clear IGFBP-3 from the
circulation. Because KCs of both human and
rat liver have been reported as a source of
hepatic IGFBP-3,18 19 27–30 36 the role of diVerent
liver cell populations in the degradation of
IGFBP-3 and the mechanisms of its uptake
remain to be determined.

IGF-IR

In the liver, IGF/insulin mediated signal trans-
duction may occur through binding to either
the insulin receptor (IR) and/or the IGF-IR.
Hepatocytes have not been thought to be a
major target tissue for the actions of IGF-I
because only very few high aYnity binding sites
for IGF-I have been demonstrated on adult rat
hepatocytes.37 38 Furthermore, both the short
term and long term metabolic actions of IGF-I
on primary cultures of rat hepatocytes have
been attributed to low aYnity IGF-I binding to
the IR.39 In contrast, expression of the IGF-IR
has been detected in non-parenchymal cells,
namely KCs,22 40 ECs,22 31 and HSCs,22 30 41 ren-
dering these liver cells susceptible to the
mitogenic eVects of IGFs. In fact, a function-
ally active IGF-IR has been demonstrated on
hepatic stellate cells at days two and three of
primary culture because proliferation of these
non-parenchymal cells was stimulated signifi-
cantly by the addition of IGF-I.18 42

IGF-II/M6PR

The cellular 240 kDa IGF-II/M6PR is mem-
brane bound, but is also released in a soluble
form into the culture medium43 or serum44 45 by
truncation of its 20 kDa C-terminal cytoplas-
mic tail. All the diVerent types of liver cell in
primary culture have been shown to express the
membrane bound IGF-II/M6PR,22 30 41 46 and
the liver of the adult rat was shown to be the
tissue with the highest release of soluble
IGF-II/M6PR.47

The IGF axis in hepatocarcinogenesis
IGF-I

In seven human hepatoma tissues, IGF-I
mRNA expression was lower compared with
the adjacent non-tumorous tissue.48 This low
IGF-I gene expression might be related to the
diseased tissue itself; alternatively, it might be
the result of reduced GH stimulation because
GH receptor expression in the hepatoma tissue
was also low.48 A recent study on 53 patients
with hepatocellular carcinoma (HCC) revealed
significantly lower serum IGF-I concentrations
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in both virus negative and virus positive HCC
patients compared with patients with meta-
static liver cancer and normal controls.49 After
controlling for the degree of liver damage (as
assessed by prothrombin time and serum albu-
min values), the reduction of serum IGF-I
concentrations in patients with HCC appeared
to be largely independent of liver damage.

IGF-II

Evidence that the IGF axis is involved in hepa-
tocarcinogenesis was deduced from early ob-
servations showing overexpression of the
IGF-II gene in liver tumours and preneoplastic
hepatic foci in diVerent animal models of
hepatocarcinogenesis,50–56 as well as in human
HCC.57 58 The amount of IGF-II expression in
the HCCs was highly variable. Overexpression
of IGF-II associated with re-expression of the
fetal pattern of IGF-II transcripts in HCC
occurred through activation of the fetal pro-
moters P2–P459 and loss of activity of the adult
promoter P1.60 Allelic expression of the IGF-II
gene in the liver is unique in that its expression
is monoallelic (maternally imprinted) during
the fetal period, but it becomes biallelic there-
after. Increased expression of IGF-II associated
with allelic imbalance was demonstrated in
preneoplastic hepatic foci,61 as well as in
HCC.62 In this latter study, an extreme allelic
expression imbalance, leading to restoration of
monoallelic IGF-II expression, was observed in
15 of 15 informative HCCs.

In patients with HCC, increased prevalence
of hepatitis B and C virus (HBV, HCV) infec-
tion has been found. In both HBV and HCV
induced HCC, a link with increased IGF-II
expression was demonstrated.21 63–66 In HCV
positive liver cirrhosis, HCV replication was
significantly associated with the overexpression
of IGF-II.67 The HBV X protein (HBx), which
is thought to be the causative agent in the for-
mation of HCC in HBV positive patients, was
shown to increase endogeneous IGF-II expres-
sion from the fetal promoters P3 and P4 of the
IGF-II gene. Further studies indicated that
HBx positively regulated IGF-II transcription
through the Sp1 binding sites of P4.68 Aflatoxin
B1 induced mutation of the p53 gene at codon
249 (p53mt249) is crucial during the forma-
tion of HCC after HBV infection. P53mt249
greatly increased IGF-II transcription, largely
from P4, through formation of transcriptional
complexes via enhanced DNA–protein (Sp1 or
TATA box binding protein (TBP)) and
protein–protein (Sp1 and TBP) interactions.69

A pathophysiological link between IGF-II
overexpression and cell proliferation was dem-
onstrated by Lin et al,70 who found high
concentrations of IGF-II in the human
hepatoma cell lines HuH-7 and HepG2. Anti-
sense oligonucleotides complementary to
IGF-II mRNA reduced both IGF-II mRNA
and protein, and this was associated with
decreased cell proliferative activity in these cell
lines.

IGFBPs
In a study on surgical specimens from patients
with HCC, the expression of IGFBP-1,

IGFBP-3, and IGFBP-4 was significantly
downregulated in HCC tissue.71 In a study of
11 human hepatoblastomas, the expression of
IGFBP-1 was decreased in tumours compared
with the corresponding normal liver from the
same individual, with the exception of two
cases.72 In this study, IGFBP-2 was constantly
reduced in hepatoblastoma tissue, although the
size of the decrease varied. The authors
suggested that because of reduced IGFBP
expression in tumours an excess of biologically
active IGFs might be available to potentiate the
proliferative eVects; however, only a few studies
have investigated the role of IGFBPs in the
modulation of the eVects of IGF during hepa-
tocarcinogenesis. In the human hepatoma cell
line PLC, the mitogenic activity of exogenously
added IGFs was reduced by the presence of
IGFBPs 1–4.73 This inhibitory eVect was
attributed to IGFBP-3, which was the only
IGFBP in the conditioned medium of PLC
cells to be stimulated by exogenous IGFs.
Similarly, treatment of the human Hep 3B cell
line with all trans retinoic acid (RA) revealed a
decrease of IGFBP-3, and treatment with RA
over six days resulted in a time dependent
stimulation of the growth of Hep 3B cells.74

Addition of recombinant human IGFBP-3 also
inhibited the growth of the human hepatoma
cell lines PLC/PRF/5 and HepG2.74 In LMH
chicken hepatoma cells, the eVects of IGF-I on
proliferation were inhibited by a soluble and
membrane bound 28 kDa IGFBP.75 A study by
Kondoh et al suggested a role for IGFBP-1 in
cell proliferation in the human hepatoma cell
lines HuH-7 and HepG2.76 Among other
genes, expression of the IGFBP-1 gene was
undetectable in rapidly proliferating hepatoma
cells, whereas its expression was high in dense,
overcrowded cultures.

IGFBP PROTEASES

Limited proteolysis of IGFBPs is believed to be
the major mechanism for the release of IGFs
from IGFBP–IGF complexes, generating frag-
ments with reduced aYnity for IGFs.11 There-
fore, enhanced IGFBP proteolytic activity is
thought to contribute to carcinogenesis
through increased IGF-IR stimulation as a
result of the increase in bioavailable IGF.
Although several diVerent proteases have been
detected in tissue from HCCs, the precise role
of these proteases with respect to IGFBP pro-
teolysis and hepatocarcinogenesis is still ob-
scure. In conditioned medium from the human
hepatoma cell line PLC, cathepsin D was iden-
tified as an acid activated IGFBP-3 protease by
its pH optimum, protease inhibitor profile, and
by immunodepletion with specific antisera.73

Similar to rat liver cells in primary culture, cell
associated proteolytic degradation of IGFBP-3
was seen in PLC cells at neutral pH, which was
mediated by cathepsin D localised intracellu-
larly in endosomal recycling compartments or
in lysosomes. These data point to a role for
cathepsin D in the regulation of IGFBP
bioavailability via endocytosis in acidic prelyso-
somal compartments. Of interest, increased
plasma cathepsin D concentrations have been
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detected in patients with hepatocellular carci-
noma.77 78

More evidence of a role for IGFBP proteoly-
sis in hepatic tumour development was pro-
vided by a study of Martin et al,79 which used a
double transgenic murine hepatic tumour
model overexpressing the SV40 T antigen
(TAg) and tissue inhibitor of metalloproteinase
1 (TIMP-1). This study demonstrated that
TIMP-1 expression blocked liver hyperplasia
during tumour development, despite TAg
mediated reactivation of IGF-II. IGFBP-3
degradation was lower in TIMP-1 overexpress-
ing livers and, as a consequence of reduced
IGFBP-3 proteolysis and raised IGFBP-3 pro-
tein concentrations, IGF-II values were signifi-
cantly lower in the transgenic animals. This
decrease in bioavailable IGF-II resulted in
diminished IGF-IR signalling in vivo, as
demonstrated by diminished receptor kinase
activity and decreased tyrosine phosphoryla-
tion of the IGF-IR.

IGF-IR

IGF-IR specific mRNA was detectable in 10 of
10 human hepatoma cell lines80 and the
chicken hepatoma cell line LMH.75 In the
human hepatoma cell lines PLC73 and
HepG2,81 as well as the rat hepatoma cell line
H4IIE,82 IGF-IR protein and/or mRNA were
detected. In the PLC hepatoma cell model,
both IGF-I and IGF-II stimulated [3H]-
thymidine incorporation in a dose dependent
manner.73

Several lines of evidence have suggested that
the HBx protein plays a role in the process of
HBV associated liver carcinogenesis. Kim and
colleagues83 found significantly higher expres-
sion of the IGF-IR in the human hepatoma cell
line SNU 368, which produces the HBx
protein, than in SNU 387 cells, which lack the
HBx protein. This study indicated that the
HBx protein might play a role in the develop-
ment of HCC through activation of IGF-IR
gene expression.

IGF-II/M6PR

Because of its essential functions for the degra-
dation of mitogenic IGF-II, the activation of
the growth inhibitor TGF-â, and the transport
of lysosomal proteases, the gene encoding
IGF-II/M6PR has been considered to be a
tumour suppressor gene.5 Thus, in a variety of
tumour cell lines, as well as in rat and human
HCCs, the expression of the IGF-II/M6PR
gene has been reported to be significantly
reduced.84 85 Furthermore, in approximately
70% of patients with HCC in the USA, loss of
heterozygosity at the IGF-II/M6PR locus, with
point mutations in the remaining allele, has
been detected.86–89 Several of these mutations
have been shown to disrupt the ligand binding
functions of the intact IGF-II/M6PR,90 91

further supporting the hypothesis that IGF-II/
M6PR is a tumour suppressor gene. These data
are in contrast to a recently published study on
human HCC in Japan,92 which failed to detect
genetic alterations of the IGF-II/M6PR gene,
rendering the role of IGF-II/M6PR in hepato-
carcinogenesis controversial. In line with these

results, the IGF-II/M6PR gene was not found
to be mutated in an albumin SV40 large T
antigen transgenic model and a chemically
induced model of hepatocarcinogenesis in the
rat.93

MODELS OF HEPATOCARCINOGENESIS

In diVerent species, and in various animal
models of hepatocarcinogenesis, a sequence of
characteristic preneoplastic hepatic foci lead-
ing to hepatocellular adenomas (HCA) and
HCC have been reported.94 So far, a compre-
hensive study on IGF, IGFBP, and IGF recep-
tor expression in various stages of hepatocar-
cinogenesis has only been performed in two
animal models, namely: (1) the woodchuck
hepatitis virus (WHV) carrier woodchuck liver
and (2) low number pancreatic islet transplan-
tation into the livers of streptozotocin induced
diabetic rats. Therefore, alterations of the IGF
axis occurring in these two animal models will
be described in more detail.

In the model of pancreatic islet transplanta-
tion into the livers of diabetic rats, a sequence
of clear glycogen and fat storing foci over
mixed cell foci and basophilic cell foci leading
to the development of HCA and HCC has
been observed.95 Because these lesions were
anatomically close to the transplanted islets of
Langerhans, it is likely that the local hyperin-
sulinaemia (probably together with other
peptides) was responsible for the demonstrated
changes.96 97 By a few days after islet transplan-
tation, pronounced alterations of the IGF axis
were detectable in glycogen storing foci;
namely, increased expression of IGF-I and
IGFBP-4 associated with decreased expression
of IGFBP-1 (fig 1).98 At this stage of hepatocar-
cinogenesis, IGF-II was barely detectable in
both preneoplastic foci and non-altered acini.
IGF-II expression in HCC was heterogeneous,
with some tumours showing a strong IGF-II
overexpression and some tumours being nega-
tive for IGF-II. Although IGF-IR expression
was low in preneoplastic foci, strong IGF-IR
expression was seen in HCCs, rendering
tumour cells susceptible to the mitogenic
eVects of autocrine and paracrine IGFs (fig
1).98 Because of the low IGF-IR expression in
preneoplastic foci, it is likely that the enhanced
cell proliferation seen in preneoplastic hepatic
foci96 is mediated by the IR, rather than the
IGF-IR. Indeed, increased IR expression asso-
ciated with an activated signal transduction
cascade such as IRS-1, raf-1, and MEK-1
(mitogen activated protein kinase kinase) has
been demonstrated in preneoplastic hepatic
foci in this animal model (F Dombrowski et al,
1998, unpublished). However, despite the high
proliferative activity, the growth rate of these
preneoplastic hepatic foci was limited by the
high apoptotic activity also seen in these foci.96

During the development from preneoplastic
hepatic foci to HCA and HCC the increase in
mitotic activity was greater than the increase in
the rate of apoptosis.95 This shift towards a net
increase in proliferation might be related to a
decrease of IR and IRS-1, raf-1, and MEK-1
expression, and/or an increase of IGF-IR
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expression during the progression to HCC in
this model.

Studies investigating the IGF axis in the
WHV model revealed an overexpression of
IGF-II in over 90% of preneoplastic hepatic
foci in precancerous woodchuck liver as well as
in HCC derived from this model.53 54 Further-
more, in situ hybridisation studies showed that
IGFBP-1 and IGFBP-2 were downregulated in
preneoplastic hepatic foci, as well as in HCC
tumour tissue, compared with the adjacent
normal liver, whereas IGFBP-4 was upregu-
lated.99 Although in the HCC model of pancre-
atic islet transplantation IGF-II overexpression
was only detectable in HCC, but not in
preneoplastic foci, the altered IGFBP expres-
sion in preneoplastic foci was comparable with
that reported for the WHV model.99 Despite
the similarities of IGFBP expression observed
in these two models, the biological actions of
IGFBPs—whether they enhance or attenuate
the eVects of IGFs—cannot be predicted in an
in vivo animal model. To define the role of
IGFBPs during the process of hepatocarcino-
genesis, the above described model of islet
transplantation needs to be transferred to mice
carrying a targeted disruption for one of these
IGFBPs or vice versa to IGFBP transgenic
mice.

In summary, we demonstrated pronounced
alterations in the expression of components of
the IGF axis during hepatocarcinogenesis.
Prominent features detected in hepatoma cell
lines, in animal models of hepatocarcinogen-
esis, and in HCC comprise the re-expression of

the fetal pattern of IGF-II mRNA transcripts
as well as the presence of the IGF-IR; these
events have been identified as crucial to the
process of malignant transformation and the
growth of tumours. Alterations of local IGFBP
production and the presence of IGFBP proteo-
lytic activities, resulting in an excess of
bioactive IGFs, may further potentiate the
mitogenic eVects of IGFs in the development
of hepatocellular carcinoma. A pathophysi-
ological role for the IGF-II degrading IGF-II/
M6PR in hepatocarcinogenesis, either through
downregulation or mutation of the IGF-II
binding site, has not been uniformly detected
in all animal models and HCCs studied so far.
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