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Abstract
The contribution of molecular genetics to
colorectal cancer has been largely re-
stricted to relatively rare inherited tu-
mours and to the detection of germ line
mutations predisposing to these cancers.
However, much is now known about the
somatic events leading to colorectal can-
cer in general. Several studies have exam-
ined the relation between genetic features
and prognosis. The purpose of this article
is to review these studies and summarise
the current state of this subject. Although
many of the published studies are small
and inconclusive, it is clear that several
diVerent pathways exist for the develop-
ment of this cancer, and some molecular
characteristics seem to correlate with
clinicopathological features. At present,
studies are confined to evaluating a small
number of molecular markers; however,
with the advent of methods for the rapid
genetic profiling of large numbers of
colorectal cancers, it will be possible to
evaluate fully the clinical usefulness of a
range of colorectal cancer genotypes.
(J Clin Pathol: Mol Pathol 2001;54:206–214)

Keywords: colorectal cancer; prognosis; genes

Colorectal adenocarcinoma accounts for over
90% of the malignant tumours of the large
bowel. After lung and breast cancer, colorectal
cancer is the most common cause of death
from malignant disease in the Western world.
The incidence of the disease in England and
Wales is about 30 000 cases/year,1 resulting in
approximately 17 000 deaths/annum,2 and it
has been estimated that at least half a million
cases of colorectal cancer occur each year
world wide.3 Incidence rates of colorectal can-
cer are increasing in many countries. Unfortu-
nately, despite improvements in medical and
surgical provision, there has been compara-
tively little change in mortality from colorectal
cancer during the past 40 years,4 and the over-
all five year survival is only around 40%.

Natural history of colorectal cancer
In Western countries, approximately 60% of
primary colorectal cancers are situated in
either the rectum or sigmoid. Of the remainder,
a half arise within the caecum. Colorectal can-
cers are generally staged according to Dukes’s
system into categories A, B, C, and D.5 Grade
can be either expressed simply as degree of dif-
ferentiation (well, medium, or poorly diVeren-
tiated) or according to the more complex Jass
grouping.6 Prognosis correlates extremely well
with both stage and grade.

Patients with colorectal cancer fall broadly
into two groups at time of presentation. The
first group has either non-resectable or dis-
seminated disease. These patients have a very
poor prognosis, with a median survival of seven
months.3 The other two thirds of patients will
undergo a resection of their primary tumour.
Despite an apparently “curative” resection,
approximately 50% of patients die within five
years, and of these around 80% will have had a
detectable recurrence within two years. Most of
these patients die as a result of liver metastases,
but there is evidence that they also have exten-
sive extrahepatic disease. Studies of occult
hepatic metastases have estimated that the
mean age of deposits at time of surgery is 18
months.7 This suggests that many colorectal
cancers metastasise early, but that some
tumours cannot or do not metastasise, and that
the factors that determine the propensity to
metastasise may have acted before presenta-
tion. Improved success in the treatment of
colorectal cancer clearly requires a better
understanding of its development and behav-
iour. Molecular studies have shown that the
natural history of all colorectal cancers is not
identical. The molecular basis of the clinico-
pathological features of some tumours has
been determined. If genotypic markers could
be identified that correlate with tumour behav-
iour and patient prognosis, this should lead to
a more accurate prediction of prognosis and
tailoring of treatment.

Molecular genetics of colorectal cancer
THE ADENOMA–CARCINOMA SEQUENCE

Histological observations led to the concept
that most colorectal cancers develop from nor-
mal epithelium through sequentially worsening
degrees of adenomatous dysplasia.8 The ge-
netic pathway model for the pathogenesis of
sporadic colorectal cancer proposed by Fearon
and Vogelstein is based upon this concept of an
adenoma to carcinoma sequence (fig 1).9

Although the total accumulation of mutations
is the principal factor, the model proposed that
the causative mutations in tumour suppressor
genes and oncogenes occur in a specific order
in most colorectal cancers (specifically, adeno-
matous polyposis coli (APC) gene mutations,
global hypomethylation, K-ras mutations, de-
leted in colon cancer (DCC) gene mutations,
and finally mutations in the p53 gene). The
Fearon and Vogelstein model of colorectal car-
cinogenesis was proposed over 10 years ago.
During this time, other mutations that occur at
a high frequency in colorectal cancer have been
identified, and the original model can be
considerably elaborated to take in account the
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alternative pathways for the development of
cancer that are now known to exist.

INITIATION OF COLORECTAL CARCINOGENESIS

There is good evidence that only two mutations
are required for the initiation of colorectal car-
cinogenesis. In most cases, these mutations
occur at the APC tumour suppressor locus
(5q21–q22).10–12 APC mutations, which gener-
ally lead to a truncated APC protein,13 or take
the form of allele loss,14 are detected in about
75% of sporadic colorectal cancers15 and are
observed in the earliest adenomas.10 In addition
to the role of the APC gene in the aetiology of
sporadic colorectal cancer, germline mutations
in this gene cause familial adenomatous
polyposis coli (FAP), which is characterised by
florid adenomas within the gastrointestinal
tract. The APC protein acts as a dimer.16 It is
likely that the gene product exerts its tumour
suppressor actions through intracellular signal-
ling, interactions with the cytoskeleton, and the
control of cellular proliferation, possibly by
aVecting the rate of cell division or
apoptosis.17–22

Whether APC mutations are always the first
events in colorectal carcinogenesis or whether
germline defects in one of the mismatch repair
(MMR) genes could provide an alternative ini-
tiating step has been questioned. Mutations in
three MMR genes primarily cause the domi-
nantly inherited syndrome hereditary non-
polyposis colorectal cancer (HNPCC): MSH2
on chromosome 2p, MLH1 on chromosome
3p, and MSH6 on chromosome 2p16.23–26

Colorectal cancers from patients with muta-
tions in these MMR genes consistently show
microsatellite instability (MSI), a form of rep-
lication error (RER). Although it is generally
assumed that mutations in the MMR genes in
HNPCC families act only to increase the
mutation rate (including mutations in APC), it
is also possible that the MMR mutations
themselves have a direct role in initiation.
MMR mutations also occur in sporadic colo-
ectal cancers27; however, when these mutations
arise somatically they occur after APC muta-
tions and are therefore involved in the progres-
sion of tumours rather than initiation.28

Colorectal cancers associated with ulcerative
colitis do not usually develop from adenomas,29

suggesting a diVerent genetic pathway from

sporadic cancers.30 The low frequency of APC
mutations in inflammatory bowel disease asso-
ciated cancers suggests that mutations in this
gene are not the initiating event in these
tumour types.31–33

The possibility that mutations in genes other
than APC can initiate colorectal tumorigenesis
is suggested by reports of adenoma families
unlinked to APC.34 In addition, there is emerg-
ing evidence that a hamartoma–adenoma–
carcinoma sequence exists,35 and genes for sev-
eral hamartoma syndromes have been
identified (such as Peutz Jeghers syndrome
caused by LKB1 mutations,36 some forms of
juvenile polyposis caused by SMAD4 muta-
tions,37 and Cowden’s syndrome caused by
PTEN mutations38). Furthermore, there is
some support for a hyperplastic polyp ad-
enoma carcinoma sequence (fig 1).39

COLORECTAL CANCER PROGRESSION: EARLY

ADENOMA TO CARCINOMA

Although mutations in the APC gene are initi-
ating events in colorectal tumorigenesis, these
mutations alone are probably insuYcient for
adenomas to progress, and without mutations
at other loci regression might occur.40 41 Several
genes are involved in the progression of early
adenomas to early carcinomas. Early candi-
dates for adenoma progression were the ras
oncogenes. The K-ras gene is one of a family of
three human ras genes (K-ras, H-ras, and
N-ras).42 These encode small GTP binding
proteins localised to the inner leaflet of the cell
membrane and are involved in transducing sig-
nals from receptor tyrosine kinases such as epi-
dermal growth factor receptor (EGFR). The
receptors are coupled to the ras proteins
through an intermediate complex of GRB and
SOS2 proteins. Downstream elements of this
transduction pathway include the cytoplasmic
RAF serine threonine kinase and mitogen acti-
vated protein (MAP) kinase cascade. The ras
proteins are activated on binding GTP and
deactivated by intrinsic GTPase activity from
two GTPase activating (GAP) proteins. One of
these is ras-GAP-p120 and the other neurofi-
bromin, the product of the NF1 gene. The ras
oncogenes are activated by point mutations
that prevent the activation of GTPase.42 More
than 50% of colorectal cancers display specific
mutations in the K-ras gene, with an increasing
frequency in larger and more advanced le-
sions.43 The consequence of K-ras mutations
during tumour development may be a growth
advantage of those cells with both APC and
K-ras mutations over cells with APC mutations
alone. Whereas K-ras mutations are seen
within histologically normal mucosa,44 they
appear only to be present in dysplastic mucosa
with coexisting APC mutations.45 46 This sup-
ports the notion that K-ras mutations confer
no growth advantage in the absence of a muta-
tion in the APC gene.

The MCC (mutated in colon cancer) and
DCC tumour suppressor genes were originally
thought to play a role in colorectal carcinogen-
esis. In the model of Fearon and Vogelstein,
mutation at the DCC locus represented the
third step in the genetic pathway.9 The MCC

Figure 1 Genetic pathways of colorectal carcinogenesis.
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and DCC genes were identified as a result of
the frequent allele loss close to their locations
on 5q21–q22 and 18q21.3, respectively, in
colorectal cancers.47 48 A small number of
mutations at MCC were originally described in
colorectal cancers,49 but subsequent studies
have found very few mutations, suggesting that
APC is the primary target for allele loss on
5q21–q22.50 DCC is a neural cell adhesion
molecule homologue and DCC mutations may
therefore have a role in colorectal tumour pro-
gression, invasion, and metastasis (although
allele loss at DCC generally occurs before
malignancy). However, there is evidence sug-
gesting that SMAD4 may also be the target of
allele loss on chromosome 18q in some
cancers.51

There is no doubt about the role of p53
mutations in the progression of colorectal
tumours. The p53 protein is important in
maintaining DNA integrity. DNA damage
results in p53 mediated arrest in G1 phase of
the cell cycle, followed by repair or, if the dam-
age is too great, p53 induced apoptosis. There-
fore, loss of function of p53 by mutation or
deletion allows cells to accumulate mutations
throughout the genome and results in karyo-
typic instability, impaired G1 cell cycle arrest,
and reduced apoptosis.52–55 Mutations in the
p53 gene occur in around 75% of colorectal
cancers, but the frequency is lower in mucinous
cancers and those that arise in the proximal
colon, as seen in HNPCC. p53 mutations are
rare in adenomas, suggesting that p53 plays a
role in tumour progression, but it is not an
absolute requirement for malignant transfor-
mation because a large proportion of cases
have no demonstrable abnormality. p53 muta-
tions tend to occur at the late adenoma stage
(although earlier in inflammatory bowel dis-
ease associated colorectal cancers, which do
not develop from adenomas).56 Dominant, gain
of function mutations in p53 are common in
colorectal cancers, and these can be detected
reliably using immunohistochemistry for the
p53 protein.57 58 Allele loss near p53 (chromo-
some 17p13.1) also occurs frequently,56 either
because of loss of the wild-type allele or possi-
bly because another gene nearby is targeted.

The sites of other candidate tumour suppres-
sor genes that might be involved in colorectal
tumour progression have been identified by
allele loss studies. Mutations of the FHIT
gene59 and at the p16 (MTS1) locus60–62 may be
important in colorectal tumours, the latter
through failure of cell cycle arrest. Locations of
other tumour suppressor loci include chromo-
somes 1p (near the putative human Mom-1
homologue),63 64 6q,65 8p,66 67 14q,68 and 22q.69

Allele loss typically occurs at these locations at
frequencies of between 30% and 60%.

The roles of MMR mutations in colorectal
tumorigenesis have been discussed briefly. In
HNPCC tumours, one mutation is inherited
and the other occurs somatically; in about 15%
of sporadic colon cancers, two MMR muta-
tions (or two mutations at a related locus)
occur in the soma.70 Normal mucosa from
patients with HNPCC does not display MSI;
only 50% of HNPCC adenomas (compared

with 90% of cancers) exhibit MSI, and the fre-
quency of early lesions such as APC mutations
is similar in MSI and MSS (microsatellite
stable) tumours.71 72 Therefore, in sporadic
cancers, defective MMR function might be an
alternative method to allele loss of acquiring
mutations, and loss of MMR may simply
“catalyse” the progress of a tumour down the
same pathway as MSS cases. It is possible that
MMR mutations act as alternatives to p53
mutations in colorectal tumours, albeit
through a diVerent mechanism. Whereas ge-
nomic instability in p53 mutant cancers tends
to take the form of karyotypic abnormalities,
instability resulting from MMR mutations
leads to near diploid lesions. It has been found
that MMR mutations are negatively associated
with mutant p53 and that, like p53 mutations,
MMR mutations often occur in late colonic
adenomas.72 73 Genomic instability may also be
caused by somatic or germline mutations in
other genes involved in DNA replication and
repair. There is support for this from a study of
two apparently sporadic colorectal cancer cases
that harboured DNA polymerase ä variants.74

MALIGNANCY

Few genetic changes specific to mature colo-
rectal cancers have been identified. Several
regions of allele loss have been detected, but
their roles in tumour progression are unclear.
The types of mutations that will be important
in mature colorectal cancer are those that cause
faster replication, decreased apoptosis, or ang-
iogenesis. Malignancy requires colorectal
tumour cells to exhibit several features,
namely: (1) the ability to erode the basement
membrane; (2) the ability to disrupt normal
cell junctions; and (3) the capacity to survive in
the blood or lymphatic systems and in a new
tissue environment.

Cell adhesion molecules are candidates for
involvement in the process of invasion and
metastasis of colorectal cancers. Mutations at
these loci may have eVects on growth, in addi-
tion to those on adhesion. For example, E cad-
herin forms part of the adherens junction com-
plex of epithelial cells. Loss of E cadherin
protein occurs in several cancers, including
colorectal cancer, and is associated with the
development of invasive properties.75–77 Other
proteins that may be associated with invasion of
colorectal cancers include those involved in tis-
sue degradation, such as urokinase plasmino-
gen activators and matrix metalloproteinases/
collagenases.78 79 The cells of metastases may
have genotypes and/or patterns of gene expres-
sion distinct from primary tumours. Variation
at several gene loci may alter the behaviour
pattern of the mature colorectal cancer. These
include the NM23 gene, which has a possible
role in the metastasis of several cancers, and
CD44.80–85

Clinicopathological correlations:
prediction of prognosis
The recognition that there are probably several
diVerent genetic pathways for colorectal cancer
suggests that correlations exist between the
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molecular and clinicopathogical features of
tumours that are not apparent using routine
methods such as histology. These correlations
may serve as prognostic determinants and/or
enable the partitioning of patients with colorec-
tal cancer into groups for diVerent treatments.
Several studies have sought to examine the
relation between genotypic variation in colo-
rectal cancers and clinicopathological features,
especially prognosis. Most work has been in the
form of case control studies using a compari-
son of the frequency of genotypes in primary
and secondary tumours as a surrogate for sur-
vival. However, a small number of studies have
examined the relation between genotype and
prognosis by classic survival analysis. In this
section, the evidence for genetic variation in
colorectal cancers as markers of prognosis is
reviewed, including some studies of protein or
mRNA expression that have been assumed to
be indicators of underlying mutations.

ALLELE LOSS STUDIES

In an early allelotyping study based upon 56
patients with colorectal cancer, Vogelstein et al
showed that patients with more than the
median percentage of allelic deletions had a
worse prognosis.86 Later studies have examined
the relation between specific chromosome
abnormalities and tumour behaviour.

Chromosome 18q loss has been evaluated
extensively as a prognostic marker in several
studies.47 87–93 In a study of 145 patients with
resected stage II or stage III disease reported by
Jen et al,47 the five year survival rate was 93% in
those with no loss and 54% in those with chro-
mosome 18q loss in stage II disease, and 52%
and 38%, respectively, with stage III disease.
The overall estimated hazard ratio (HR) for
death associated with tumour chromosome
18q loss was 2.8 (p < 0.01) in a univariate
analysis. Allelic loss remained a strong predic-
tive factor after adjustment for tumour diVer-
entiation, vein invasion, and TNM stage
(HR = 2.46; 95% confidence interval (CI),
1.06 to 5.71; p = 0.04). A similar finding was
reported by Ogunbiyi et al from an analysis of
151 patients who had undergone potentially
curative surgery for colonic disease.91 Chromo-
some 18q allelic loss was a negative prognostic
indicator of both disease free (HR = 1.65;
p = 0.01) and disease specific survival
(HR = 2.0; p = 0.003). Furthermore, 18q loss
was associated with significantly reduced dis-
ease free and disease specific survival in cases
with stage II (p = 0.05 and p = 0.016) and III
(p = 0.038 and p = 0.032) disease. Two stud-
ies have specifically examined the relation
between 18q allele loss and prognosis in stage
II disease.92 93 The study reported by Martinez-
Lopez et al based on 144 patients supported
the notion that allele loss in tumours is associ-
ated with an unfavourable outcome.93 Five year
survival was 42% in those with chromosome
18q loss and 73% in those without detectable
loss (p < 0.01). Multivariate analysis showed
that tumour site (p < 0.001) and 18q loss
(p = 0.01) were the only independent prognos-
tic factors. Furthermore, loss had a significant
influence on survival (p = 0.016). In contrast,

the study reported by Carethers et al,92 based
on 70 patients, found that 18q allelic loss was
not associated with a survival disadvantage
(HR = 1.17; 95% CI, 0.27 to 5.10).

Cytogenetic and allele loss studies of chro-
mosome 17 (and in particular at the NM23
locus) have been based on fewer patients than
the analyses of chromosome 18q.87 94–96 Most
studies have found that both 17p and 17q
anomalies are associated with invasion and
metastasis, and allele loss at 17q has been pro-
posed to provide independent prognostic
information.95

Mutations that are likely to have prognostic
relevance are those that occur in genes involved
in tumour progression rather than initiation.
Therefore, it is not surprising that allele loss at
chromosome 5q, the site of the APC gene, has
not been shown to have prognostic value.87 88 90

The high rate of allele loss in other chromo-
somes such as 8p, 1p, and 11q during tumour
progression suggests that these may be sites of
other tumour suppressor genes important for
the progression of colon tumours. A correla-
tion between 8p allele loss and microinvasion
(a prognostic marker independent of Dukes’s
stage) has been reported in one small study of
14 patients with cancer.97 A relation between
tumour progression and chromosome 1 dele-
tions has also been shown in one study of 116
patients who had undergone curative treatment
(HR = 4.1; 95%CI, 1.25 to 9.23).98

Allele loss at other chromosomes has been
evaluated less extensively. An analysis of 126
sporadic colorectal cancers for allele loss at
chromosome 11q22 failed to show a relation
with Dukes’s grade or degree of diVerentia-
tion.99 A prospective study assessing allelic loss
at chromosome 4p14–16 in 181 patients has
suggested that allele loss may be associated
with a shorter disease free survival.100

K-RAS

Along with p53, K-ras mutations are one of the
most common genetic lesions in human
cancer. Since the discovery of the human ras
gene family, the eVect of diVerent ras muta-
tions on tumour behaviour have been debated.
Point mutations in codons 12, 13, and 61 of the
K-ras gene are early events in the pathogenesis
of colorectal cancer. However, the impact of
the number, type, and position of such
mutations on the progression of adenomas, in
addition to the clinical behaviour of colorectal
carcinomas, is not fully established. To date,
most studies have indicated that the second
base of codon 12 is more heavily mutated in
colorectal cancer than the first or the third
bases. Therefore, it is conceivable that the type
of K-ras mutation directly determines tumour
behaviour.

In a study of 194 consecutive primary,
recurrent, and metastatic colorectal adenocar-
cinomas, Finkelstein et al reported a signifi-
cantly higher mutation rate of K-ras mutations
in lymphogenous haematogenous metastatic
disease.101 When colorectal carcinomas were
analysed by specific K-ras mutation type,
codon 13 mutated tumours did not progress
locally or metastasise. Tumours with a codon
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12 valine substitution did not metastasise
beyond pericolonic perirectal lymph nodes. In
contrast, codon 12 aspartic acid substitutions
were common in cancers exhibiting distant
deposits. No mutations were common in
tumours with intraperitoneal deposits. On the
basis of these data, Finkelstein et al proposed
that genotyping of colorectal adenocarcinoma
for K-ras status would identify subsets of
patients likely to have indolent or aggressive
forms of disease.101 Some, but not all, reports
have supported the proposal that the posses-
sion of a K-ras mutation is independently asso-
ciated with shorter survival.102–106 To clarify the
association between K-ras mutations, patient
outcome, and tumour characteristics a meta-
analysis of data from 22 research groups (total
number of cases 2721) was undertaken by
Andreyev et al.107 Mutations were not associ-
ated with sex, age, site, or stage. Poorly
diVerentiated tumours were less frequently
mutated (p = 0.002). Multivariate analysis
suggested that the presence of a mutation
increased risk of recurrence (p < 0.001) and
death (p = 0.004). In particular, any mutation
of guanine to thymine but not to adenine or to
cytosine increased the risk of recurrence
(p = 0.006) and death (p < 0.001). When spe-
cific mutations were evaluated, only the codon
12 valine mutation was found to convey an
independent, increased risk of recurrence
(p = 0.007) and death (p = 0.004). The bio-
logical basis of a relation between a specific
K-ras mutation and tumour behaviour is not
straightforward. Early in vitro observations
suggested that codon 12 K-ras mutations elic-
ited stronger transformation responses than
codon 13 K-ras changes in NIH/3T3 cell
assays.108–110 However, this notion has not been
supported by biochemical analyses of diVerent
ras proteins.111–113 On the basis of the available
clinicopathological data, it is likely that patient
survival is related to the occurrence of K-ras
mutations, but not necessarily to the specific
type of mutation.

DCC

If allele loss of chromosome 18q predicts a
poor outcome in colorectal cancer, then the
DCC gene must represent a prime candidate as
the cause for this association. In a study of 132
patients with curatively resected stage II and III
carcinomas, the expression of the DCC protein
has been shown to be a strong positive predic-
tive factor for survival.114 Patients with stage II
disease whose tumours expressed DCC had a
five year survival rate of 94%, compared with a
survival rate of 62% for patients with DCC
negative tumours. Similarly, in individuals with
stage III disease, the respective survival rates
were 59% and 33% in those with and without
detectable DCC expression. This finding has
been supported by a recently published small
study of 23 patients.115

MISMATCH REPAIR GENES AND MICROSATELLITE

INSTABILITY

Evidence directly correlating molecular and
clinicopathological data for colorectal cancer
has come from HNPCC. Colorectal cancers

developing in carriers of HNPCC mutations
are poorly diVerentiated and frequently multi-
ple. Paradoxically, despite multiplicity and
poor diVerentiation of cancers, early observa-
tions suggested that colorectal cancers in
HNPCC carried a more favourable prognosis
that in sporadic cases. Convincing evidence for
improved survival in HNPCC is provided by
studies from Finland116 and Japan.117

Whether MSI characterises a subset of
sporadic colorectal cancers with a diVerent
prognosis has been evaluated in several studies.
One of the early studies reported by Bubb et al
in 1996 was based on a systematic analysis of
215 sporadic cases.118 Patients with MSI
tumours had a significant survival advantage
over those with MSS tumours, independent of
other prognostic factors (HR = 0.39; 95% CI,
0.19 to 0.82). Several subsequent studies have
reinforced this finding. In a study of 66 cases,
Massa et al found that MSI status was
independently associated with an improved
prognosis (defined by overall survival and
disease free survival).119 A large study based on
607 patients reported by Gryfe et al also found
that MSI status conferred a significant survival
advantage, independent of all standard prog-
nostic factors, including tumour stage
(HR = 0.42; 95% CI, 0.27 to 0.67).120 Regard-
less of the depth of tumour invasion, colorectal
cancers with MSI had a decreased likelihood of
metastasising to regional lymph nodes
(HR = 0.33; 95% CI, 0.21 to 0.53) or distant
organs (HR = 0.49; 95%, 0.29 to 0.89). A
similar relation was seen between MSI status
and prognosis in a study of 197 patients
reported by Johannsdottir et al.121 Although
MSI was not associated with clinicopathologi-
cal parameters, such as Dukes’s stage and
tumour diVerentiation, this phenotype was
associated with better overall survival. From an
analysis of 225 colorectal cancer cases, Jernvall
et al found that the five year survival rate in
MSI cancers of the proximal colon was much
better (100%) than that of those with MSS
proximal disease (74%).122 However, an oppo-
site eVect was seen in relation to distal disease.
In a study of a consecutive series of 388
Dukes’s C colon carcinomas with five year
median follow up reported by Elsaleh et al,123

the presence of MSI in the proximal transverse
colon carcinoma group was associated with a
significantly better prognosis (58% v 32%;
p = 0.015). This was largely the result of the
better survival seen in the MSI subgroup that
received adjuvant chemotherapy, leading to the
proposal that MSI status might determine the
response to adjuvant chemotherapy. However,
this seems unlikely to be the sole explanation of
a better prognosis. Wright et al found MSI sta-
tus conferred a significant survival advantage in
patients who had not been in receipt of chemo-
therapy.124 Furthermore, Hemminki et al found
that adjuvant 5-FU based chemotherapy is fea-
sible both for patients with MSI and those with
MSS.125 The three year recurrence free surviv-
als were 90% and 43% in the MSI and MSS
groups, respectively. Although most studies
have found a relation between MSI status and
prognosis some have not, including a report by
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Salahshor et al,126 based on a survival analysis at
five to 10 years follow up of 181 unselected
colorectal cases. Given that only approximately
15% of cancers display MSI, failure to demon-
state a diVerence might be the result of a lack of
power in this study.

Overall, the weight of evidence supports the
tenant that although the genetic basis of
HNPCC and sporadic cancers with MSI is dif-
ferent, tumours in the two groups share some
biological characteristics in terms of prognosis.
MSI in colorectal cancer appears to be an
independent predictor of a relatively favourable
outcome and, in addition, reduces the likeli-
hood of metastases.

p53 AND p27

An increased intracellular concentration of
p53, which is frequently but not systematically
related to p53 mutation, has been proposed to
be associated with poor prognosis in some
tumour types. In colorectal cancer, although
p53 overexpression in tumours correlates with
chromosome 17p loss, hyperdiploid DNA con-
tent, and tumour site, there have been conflict-
ing findings about its role as a prognostic
indicator in studies based on immuno-
histochemistry.127–140 This reflects the fact that
the degree of association between p53 muta-
tions and protein expression depends in part
on the specific antibody used. In studies of the
relation between p53 mutations and prognosis,
the situation is clearer. Studies suggest that
colorectal cancers harbouring p53 mutations
are more aggressive, are associated with a
higher propensity for lymphatic and haematog-
enous spread, and have a worse prognosis.141–147

However, this is not universal.123

p27 is a member of the cip/kip family of cyc-
lin dependent kinase inhibitors, which bind to
cyclin:cyclin dependent kinase (cdk) com-
plexes and block progression through the cell
cycle. p27 regulates progression from G1 into S
phase by binding to and inhibiting the cyclin
E/Cdk2 complex, which is required for cells to
enter S phase. In contrast to the p53 gene,
mutations in p27 are rare. However, cell cycle
regulation of p27 concentrations are regulated
at the post transcriptional level through
proteasome mediated degradation.148 Reduced
expression of p27 was first shown to correlate
with poor survival in a study of 149 patients
reported by Loda et al.149 Patients whose
tumours expressed p27 had a median survival
of 151 months, whereas those that lacked p27
(10%) had a median survival of only 69
months. In the study, p27 expression was
reported to be an independent prognostic
marker and the risk of death associated with
reduced expression was increased 2.9-fold.
Subsequent studies have confirmed that p27
appears to have prognostic importance.150–152

Furthermore, decreased p27 expression has
been associated with an increased likelihood of
lymph node metastases in colon cancers, inde-
pendent of depth of tumour invasion.151

Conclusions
The incidence of colorectal cancer is increasing
and unfortunately the prognosis remains poor

for most patients. The identification of those
patients who are at a high risk of recurrent local
and metastatic disease is important in selecting
the appropriate treatment. Prognostic variables
that have been found to have a significant eVect
include pathological stage and grade, type of
tumour growth, chromosomal aneuploidy, and
the presence of microinvasion. Until recently,
there has been little understanding of the
molecular basis of these indices. Despite the
continuing use of histopathology as the “gold
standard”, the genetic features of colorectal
tumours will almost certainly become useful
indicators of prognosis and of the most appro-
priate treatment. One of the problems with
clinicomolecular associations reported to date
has been that most studies have, for entirely
understandable reasons, analysed only small
numbers of tumours. Publication bias is a seri-
ous problem in assessing the usefulness of any
given marker because positive associations have
a far higher probability of being published than
negative ones. Contradictory results between
studies may reflect in part heterogeneity in
colorectal cancers. It has been suggested that
multiple biopsies and DNA sampling preceded
by careful morphological examination must be
standard if the preparation of DNA is re-
quired.153

Accepting these caveats, there is evidence
that colorectal cancers harbouring defects in
the MMR genes are associated with a better
prognosis and those with chromosome anoma-
lies, such as chromosome 18q or 17 deletions
and mutations in K-ras and p53, with a worse
prognosis. With the advent of methods for
rapid genotyping it should be possible to con-
struct mutation profiles of tumours and use
multivariate analysis to determine which
molecular features correlate with the clinico-
pathological data.
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