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Human endogenous retroviruses (HERVs) are a family of
viruses within our genome with similarities to present
day exogenous retroviruses. HERVs have been inherited
by successive generations and it is possible that some
have conferred biological benefits. However, several
HERVs have been implicated in certain cancers and
autoimmune diseases. This article demystifies these
retroviruses by providing an insight into HERVs, their
means of classification, and a synopsis of HERVs
implicated in cancer and autoimmunity. Furthermore, the
biological roles of HERVs are explored.
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Human endogenous retroviruses (HERVs)
represent footprints of previous retroviral
infection and have been termed “fossil

viruses”. They are transmitted vertically through
the germline and are thus inherited by successive
generations in a Mendelian manner. Over time,
HERVs have been subjected to repeated amplifica-
tion and transposition events giving rise to multi-
copy and single copy proviruses that are distrib-
uted within the DNA of all cells. Overall, HERVs
constitute about 1% of the human genome.
HERVs possess a similar genomic organisation to
present day exogenous retroviruses such as
human immunodeficiency virus (HIV) and
human T cell leukaemia virus (HTLV), and are
composed of gag, pol, and env regions sand-
wiched between two long terminal repeats (LTRs)
(fig 1). The LTRs possess nucleotide sequence
motifs that are fundamental to the regulation of
retroviral gene expression. In brief, the gag and
env genes encode retroviral capsid and envelope
proteins, respectively, whereas the pol gene
encodes enzymes for viral replication, integration,
and protein cleavage. Retroviruses in effect are
retrograde, because the flow of genetic infor-
mation is reversed compared with the normal
pathway of molecular biosynthesis—
DNA → RNA → protein. Indeed, all retroviruses

necessitate the conversion of viral RNA into a

cDNA intermediary, which is catalysed by the

enzyme reverse transcriptase.

“Overall, human endogenous retroviruses
constitute about 1% of the human genome”

Over 20 HERV families have been identified

during the past two decades.1–3 Although many

are defective through the accumulation of muta-

tions, deletions, and termination signals within

coding sequences, a limited number of HERVs

have the potential to produce viral products and,

indeed, to produce viral-like particles. Further-

more, some HERVs have been implicated in

certain autoimmune diseases and cancers4–7 and

might have a role in the aetiology and pathology

of disease. However, many HERVs have been

present in our genome for a considerable period of

time so that their presence may also be of benefit

to the human host.

MOLECULAR BIOLOGY AND HERVS
The focus of the human genome project is to

sequence the 3 billion DNA bases that compose

our human genome.8 Interestingly, only a small

proportion (about 3%) appears to constitute the

estimated 24 179 to 87 720 genes that are

translated into the proteins necessary to life. The

function of non-coding DNA (maligned as “junk

DNA”) is not readily obvious and it may have

important roles in packaging and influencing

gene expression. DNA is composed of two helical

strands orientated in an antiparallel fashion (fig

2), where each strand consists of a deoxyribose

phosphate backbone and a series of purine and

pyrimidine bases denoted A (adenine), G (gua-

nine), T (thymine), and C (cytosine). A unit of

sugar, phosphate, and base is strictly termed a

nucleotide, although casually represented by its

base. The two DNA strands associate through the

complementary pairing of bases—for example,

A–T and C–G—which is stabilised through

hydrogen bonding. Stretches of DNA, measured

in base pairs, constitute the numerous genes that

are found on the 23 pairs of human chromo-

somes. Genes vary in size, with some in the order

of 20–40 kilobase pairs (kbp), whereas others

extend to millions of base pairs. In addition,

human genes are composed of exons, which are

transcribed and translated into amino acids, and

introns, which are interspersed between exons

and represent non-translated regions that con-

tribute to the large size of some genes. Retro-

viruses are remarkably small (in the order of

9–10 kbp) compared with other pathogenic vi-

ruses, such as cytomegalovirus, which is 200 kbp.
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Nevertheless, retroviruses capitalise on their limited size by

using frame shifts to retrieve genetic information from multi-

ple overlapping open reading frames (fig 3). Interestingly, the

open reading frames of many defunct HERVs are interrupted

by premature stop codons that interrupt the “read through” of

genetic information. A previous demystified article9 highlights

the use of the polymerase chain reaction (PCR) to detect cer-

tain nucleotide regions of HERVs that are common to all

retroviruses.7 9

“Retroviruses capitalise on their limited size by using
frame shifts to retrieve genetic information from multiple
overlapping open reading frames”

Before protein synthesis, mRNA is transcribed from

relevant stretches of DNA (reliant on a triplet base code or

codon) that specifies a start signal (for example, ATG), an

amino acid, or a termination signal (TAA, TAG, or TGA). The

primary mRNA transcript is refined by splicing out unwanted

introns and then by adding a series of adenine bases to its 3′

end. The process of polyadenylation is considered crucial to

the stability of the mRNA that leaves the nucleus to attach to

cytoplasmic ribosomes. Here, individual tRNA molecules

attached to a specific amino acid are aligned with mRNA that

dictates the assembly of polypeptide chains (fig 4). Strictly

speaking, tRNAs use anticodons for complimentary binding,

although a codon, such as AAU for lysine (denoted by K in the

single amino acid code), is often used with reference to the

tRNA “primer binding site” of a HERV—for example, HERV-K.

Interestingly, tRNAs may use the “wobble” phenomenon in

that the first two bases are essential for binding but the third

base is less crucial. Therefore, it is possible that tRNAs may

over-ride stop codons and allow the growth of a polypeptide

chain. Ultimately, both exogenous and endogenous retro-

viruses exploit the cell’s genetic machinery and comply with

the same generic principles of protein biosynthesis to produce

further viral progeny. However HERVs stop short of viral bud-

ding (fig 3) and consequently are non-infectious.10

CLASSIFICATION OF HERVS
Historically, retroviruses were shown to cause malignant

tumours and leukaemias in chickens and mammals—for

example, the Rous sarcoma virus and mouse mammary

tumour virus (MMTV), respectively—and were subdivided

into three subfamilies: oncovirinae (oncoviruses), lentivirinae

(slow viruses), and spumavirinae (foamy viruses).2 Retro-

viruses were also classified according to morphological and

biological criteria: in particular by the observance of retroviral

particles in infected cells.11 12 In brief, type A retroviruses were

only visible inside cells, devoid of envelope, and referred to as

intracisternal particles (A type particles), whereas types B, C,

and D were enveloped and produced extracellular particles

that varied in size and appearance. Subsequently, in the 1980s,

the retroviruses HTLV-I and HIV-1 were reported and a new

classification formulated by the International Committee for

Taxonomy of Viruses.13 This taxonomy reflected the similarity

of a virus to an established retroviral genus, such as murine

leukaemia related virus. Set against this background, the first

HERV was reported in 1981,14 and many others have

subsequently been identified (table 1) using several different

methodologies. These have included the screening of human

Figure 1 Salient features of human endogenous retroviruses
(HERVs) and similarity to exogenous retroviruses.

Human endogenous retroviruses

•  HERVs: footprints of previous exposure to 
    retroviruses; coined "fossil viruses"

• Constitute approximately 1% of the human genome
•   Similar genomic organisation to exogenous retroviruses
     e.g. HIV-1, HTLV-I

•   Transmitted vertically in the germline through
     successive generations
•   Possess a reverse transcriptase gene region found in
     all retroviruses

LTR  GAG POL ENV  LTR

Figure 2 A schematic diagram of a
segment of DNA that is transcribed
into mRNA and finally translated into
a peptide product. In this example the
DNA triplet code AAG is translated
into the amino acid lysine.
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genomic libraries under low stringency conditions with DNA

probes from animal retroviruses (for example, HTDV/HERV-K,

HERV-E, and HERV-R), the use of synthetic probes homolo-

gous to the primer binding site of known retroviruses (such as

HERV-P), and the analysis of human gene loci (HERV-H,

ERV-9, and HERV-I), plus information from the human

genome project.1 3 15 Consequently, the classification of HERVs

has been complex, with arbitrary nomenclatures arising from

independent investigators, coupled with a raft of classification

criteria including morphological type, copy number, and spe-

cificity of the tRNA primer binding site. In this last case, prob-

lems have arisen when distantly related families have had

similar binding sites or cloned sequences are deficient in this

region.2 10 16

Recently, HERVs have been classified into three broad

classes (table 1) based on sequence comparison with animal

retroviruses.17 Class I HERVs are subdivided into six groups

that share homology with infectious mammalian type C

viruses. Three families within this class show homology with

murine leukaemia virus (MuLV) and baboon endogenous

virus (BaEV) in the highly conserved pol region and the gag

and env regions. Members include HERV-H, HERV-I, and
HERV-R (ERV-9). Class II HERVs show homology to mamma-
lian type B (for example, MMTV) and type D retroviruses and
are subdivided into 10 groups. These groups reflect the
sequence homology of reverse transcriptase regions of PCR
derived clones from normal leucocytes, and clones derived by
low stringency hybridisation of an MMTV gag–pol probe to a
breast cancer cell genomic library.18–20 Members include
HERV-K (fig 5) and HERV-K (C4).21 22 Interestingly, all class II
HERVs possess a lysine tRNA reflecting their derivation from
B and D type viruses.10 HERV-K has been termed the biologi-
cally most active human endogenous retrovirus family,23 and
has been further subdivided into type 1 or type 2, based on the
presence or absence of a 292 bp segment at the pol–env
boundary.24 Finally, foamy virus related HERVs are classified as
class III HERVs and include a solitary member, HERV-L. This
system provides a uniformity to the classification of HERVs
but does not include the human T cell leukaemia related
endogenous retrovirus HRES-1,25 which shows only limited
homology to HTLV-I in the LTR region.

HERVS AND CANCER
Although the precise role(s) of HERVs in the carcinogenic

process has not been fully elucidated there are several studies

that, if taken together, put forward a convincing argument for

the possible involvement of HERVs in malignancy. HERVs may

be involved in carcinogenesis by virtue of the expression of

HERV mRNA,26 functional proteins,27 or retroviral-like

particles.28 They may also be associated with the generation of

new promoters29 or the activation of proto-oncogenes.30 The

expression of HERV-R mRNA is increased in some cases of

small cell lung carcinoma.26 In addition, a teratocarcinoma cell

line has been shown to possess a HERV-K sequence and to

secrete retroviral-like particles.28 Testicular germ cell tumours

(TGCTs) have been shown to contain proteins of the HERV-K

family and patients with TGCT often exhibit a specific

immune response to gag and env proteins.27 31 It has been sug-

gested that HERV-K may be important in the progression of

TGCT through inhibition of an effective immune response,31

and the HERV env genes have been shown to encode

immunosuppressive proteins.32 33 It is clear that overexpressed

HERV proteins can elicit high titre IgG responses in some set-

tings (for example, HERV-K10 in patients with renal cancer),

Figure 3 Diagram illustrating the
influence of the long terminal repeat
(LTR) on the production of
endogenous viral peptides. Of
particular importance is that a human
endogenous retrovirus (HERV) product
may be generated using different
open reading frames.
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as detected by the SEREX method (serological identification

of expressed genes),34 suggesting that HERV proteins may in

the future provide targets for antitumour immunotherapy.

“It has been suggested that HERV-K may be important
in the progression of testicular germ cell tumours
through inhibition of an effective immune response”

HERV-K might be important in the pathogenesis of human

breast cancer. It has been shown that the T47D human mam-

mary carcinoma cell line produces retroviral particles35 with

reverse transcriptase activity.36 Both the HERV-K10 related

sequences of T47D cells37 and the reverse transcriptase

activity36 are increased by steroid hormone treatment, which is

thought to be the result of transcriptional activation via bind-

ing of the progesterone receptor to regions on the HERV-K

genome that correspond to progesterone and glucocorticoid

response elements.

In choriocarcinoma, it has been shown that a HERV type C

is inserted into the human growth factor gene, pleiotrophin

(PTN). This results in the generation of a novel tissue specific

promoter, which results in the expression of HERV–PTN

fusion transcripts, leading to the production of biologically

active PTN protein. Expression of the PTN protein (which is

normally expressed only at very low amounts in a few normal

adult tissues38) appears to be responsible for the aggressive

and invasive growth of human choriocarcinoma.29

Overexpression is a common mechanism by which proto-

oncogenes become activated, leading to subsequent neoplastic

transformation.39 In particular, activation of proto-oncogenes

of the ras family is common in many tumour types, and some

studies have suggested a potential role for HERVs in ras acti-

vation. It was shown a methylnitrosourea induced rat

mammary carcinoma that insertion of a defective endogenous

retrovirus into the intron of c-Ha-ras was responsible for its

more than 10 fold overexpression.30

Recently, it has been shown that lymphotropic herpesvirus,

Epstein-Barr virus (EBV), itself a potent transforming agent,

can transcriptionally activate the env gene of HERV-K18,

which possesses superantigen activity (as demonstrated by

major histocompatibility complex (MHC) class II dependent

preferential activation of TCRVB13 T cells in response to

murine B cells transfected with the HERV-K18 env gene).40

The authors suggested that this phenomenon accounts for the

previously described EBV associated superantigen activity,

which might in turn be crucial to T cell activation by EBV.

Although the exact function of HERVs in the carcinogenic

process is still under investigation, the evidence implicating

HERVs in the carcinogenic process is substantial and further

investigation will be required to elucidate the contribution of

HERVs to the development of malignancy.

HERVS AND AUTOIMMUNITY
In 1990, an article appeared in the Times newspaper (24

November) with the title “AIDS-like virus may cause

arthritis”. The report focused on Robert Garry’s research that

identified retroviral particles in lip biopsies taken from

patients with primary Sjogren’s syndrome (SS).41 Similarly, in

other autoimmune rheumatic diseases, such as rheumatoid

arthritis (RA) and systemic lupus erythematosus (SLE), a

plethora of articles added to this intriguing observation by

providing evidence of retroviral antigens at the site of disease,

or the presence of antiretroviral antibodies in the sera of

patients.6 42–44 A novel report in 1994 used both PCR (using

consensus primers) and serological tests to investigate the

presence of retroviruses in a cross section of patients with

rheumatoid diseases, including RA, SS, and SLE.45 Interest-

ingly, PCR failed to amplify products relating to HTLV-I or

HIV-1, although antibodies to retroviral antigens were

detected in the sera of patients. Consequently, there appeared

to be a conundrum: antibodies to retroviral products were

present but no evidence to implicate exogenous retroviruses

could be found. Between 1996 and 1999, some research groups

used so called “degenerate” retroviral primers in their PCR

reactions.7 46 47 These primers cater for modest variations

within two segments common to all retroviruses within the

reverse transcriptase encoding pol region and provide an

intervening “fingerprint region”, which permits DNA se-

quencing. In brief, these studies7 46 47 revealed nucleotide

homologies to endogenous retroviral families, including

viruses with similarity to known exogenous retroviruses.

Thus, it was plausible that the presence of HERVs could

provide an explanation for the presence of antiretroviral anti-

bodies in certain rheumatoid diseases.6 7 48 HERVs have also

been implicated in other autoimmune diseases, such as multi-

ple sclerosis (HERV-W, HERV-H) and insulin dependent

diabetes mellitus (IDDM) (HERV-K, IDDM22), in addition to

inflammatory vascular diseases.49–54 However, in the case of

IDDM, subsequent studies55 56 have not been able to confirm

this association. Mechanisms whereby HERVs could influence

autoimmunity include molecular mimicry (HERVs sharing

amino acids common to host proteins), superantigen motifs

that bypass the normal MHC restrictive process of T cell

stimulation, aberrant expression of antigens, and the presence

Table 1 Classification of human endogenous
retroviruses (HERVs)

HERV family
Representative
accession number

Class I HERVs (type C related HERVs)
Group 1, HERV-HF

HERV-H (RTVL-H, RGH) AF108842
HERV-F AF070684

Group 2, HERV-RW
HERV-W AF072506
HERV-R (ERV9) X57147
HERV-P (HuERS-P, HuRRS-P) X06279

Group 3, HERV-ERI
HERV-E (4-1, ERVA, NP-2*) S46403
51-1 J00273
HERV-R (ERV3) M12140
RRHERV-I M64936

Group 4, HERV-T
HERV T (S71, CRTK1, CRTK6) M32788

Group 5, HERV-IP
HERV-I (RTVL-I) X14953
HERV-IP-T47D (ERV-FTD) U27241

Group 6, ERV-FRD
ERV-FRD U27240

Class II HERVs (type A, B, and D related HERVs)
Group 1, HERV-K (HML-1)

HERV-K (HML-1.1) U35102
Group 2, HERV-K (HML-2)

HERV-K10 M14123
HERV-K-HTDV X8227

Group 3, HERV-K (HML-3)
HERV K (HML3.1) U35153

Group 4, HERV-K (HML-4)
HERV-K-T47D AF020092

Group 5, HERV-K (HML-5)
HERV -K-NMWV2 AF015995

Group 6, HERV-K (HML-6)
HERV K (HML-6p) U86698

Group 7, HERV-K (HML-7)
HERV-K-NMWV7 AF016000

Group 8, HERV-K (HML-8)
HERV-K-NMWV3 AF015996

Group 9, HERV-K (HML-9)
HERV-K-NMWV9 AF016001

Group 10, HERV-K (HML-10)
HERV-KC4 U07856

Class III Foamy virus related HERVs
HERV-L X89211
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of neo-antigens, perhaps as a result of HERV and/or

exogenous viral combinations.7 32 57–59 The use of animal models

has also served to enhance our understanding of endogenous

retroviruses. In a lupus model, an 8.4 kbp endogenous

retroviral transcript is expressed in affected mice.60 Further-

more, a retroviral element in one of the introns of the fas

apoptosis gene appears to alter the splicing of fas transcripts,

resulting in a lupus-like autoimmune disease in MRL-lpr/lpr

mice.61 Further investigations using animal models and multi-

centre patient studies are needed to establish links between

specific HERVs and autoimmune diseases because many

HERVs are also expressed in varying amounts, or in a coordi-

nated fashion, in normal tissues.62 63

“Mechanisms whereby HERVs could influence
autoimmunity include molecular mimicry, superantigen
motifs that bypass the normal MHC restrictive process
of T cell stimulation, aberrant expression of antigens,
and the presence of neo-antigens”

BIOLOGICAL IMPORTANCE OF HERVS
Phylogenetic studies have shown that some HERVs emerged

over 3 million years ago, whereas others appeared after the

divergence of hominoid and ape lineages.64 Consequently,

HERVs have been present in our genome for a considerable

period of time and perhaps have been retained because they

performed a useful biological function. Alternatively, some

HERVs may have been difficult to eliminate and thus persisted

during evolution. To confer a selective advantage, a premise

remains that HERVs produce products and/or augment

mechanisms that benefit host survival. Several possibilities are

highlighted below.

Immunosuppressive peptide
The product derived from the env gene of mammalian type C

retroviruses possesses motifs—for example, the fusion pep-

tide, leucine zipper protein, and immunosuppressive peptide

(ISP)—that are essential for fusion and the infection of cells.

In brief, the precursor env product is cleaved into two compo-

nents: a surface protein (gp70) and a transmembrane protein

(p15E) that contains an immunosuppressive region.32 Of

interest is an ISP, termed CKS-17, that suppresses lym-

phocytes and alters cytokine profiles in animal models. The

ISP sequence from the murine leukaemia virus LQNRRGLD-

LLFLKEGGLC (single amino acid code) is reasonably well

conserved in HERV-H19 (LQNRRGLDLLTAEKGGLC), HERV-R

(ERV-3) (YQNRLALDYLLAQEEGVC), and HERV-E(4–1)

(YQNRLALDYLLAAEGGVC), but less so in HERV-K10

(FEASKAHLNLVPGTEAIA). The presence of an ISP could be

advantageous to a virally infected cell—in terms of shielding

or “cloaking” itself from immunological attack—but may

equally be important to a host. This is perhaps exemplified by

HERV-R (ERV3), which is highly expressed in trophoblastic

cells and results in high concentrations of env protein

(∼ 65 kDa) in syncytiotrophoblasts.65 The immunosuppressive

potential of this HERV and the fusogenic nature of placenta

tissue suggests a possible involvement in normal placental

function, in protecting the developing fetus from maternal

Figure 5 Expression of endogenous viruses HERV-K and RTVL-H in human B cells as demonstrated by reverse transcriptase polymerase chain
reaction.

Human endogenous retroviruses 15
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immune responses.66 67 Furthermore, it is possible that HERVs

may change the pattern of gene expression during embryo

development by altering different rates of development of dif-

ferent parts of the embryo. Another endogenous retrovirus,

HERV-W, has also been shown to encode a protein termed

syncytin, which may have a role in placental

morphogenesis.68

Antiviral resistance
Mechanisms of conferring protection against a related viral

agent may include retroviral receptor blockade (by HERV

products) and interference of replication by antisense mRNA.

However, it is also possible that HERV peptides could prime an

immune response to an undesirable agent. Intriguingly,

cohorts of female sex workers in the Gambia and Kenya have

been identified who remain uninfected and seronegative

despite being repetitively exposed to HIV. The apparent

“resistance” to HIV infection is suggested to result from MHC

class I restricted cytotoxic T lymphocytes (CTLs)—HLA-B35

and HLA-A2 (A*6802)/HLA-B18—which are found in Gambi-

ans and Kenyans, respectively.69 70 The immune response to

HIV infection is characterised by a vigorous HIV specific CTL

response where virus-specific CTLs recognise antigen in the

form of processed peptides (eight to 10 amino acids in length),

which are bound in the cleft of MHC class I molecules on the

surface of antigen presenting cells. In this context, recent

data71 have highlighted similarities between HIV CTL peptide

sequences and regions of HERV-K10. Consequently in some

cases previous exposure to HERV peptides could potentially

immunise certain individuals, although this argument does

not explain why some females seroconvert after a reduction in

sex work.72

Long terminal repeats
Retroviral genes that have been integrated into the genome

are bordered by short direct repeats of host DNA and LTR

sequences of about 500–600 nucleotides. These LTRs can

influence neighbouring genes because they may contain tran-

scriptional regulatory elements such as enhancers, promoters,

hormone responsive elements, and polyadenylation signals.

The influence on protein expression is demonstrated by

proteins such as salivary amylase, ZNF80, cytochrome C1,

Kruppel-like H-plk, and phospholipase A2-L, whose genes are

linked to LTRs.32 Numerous solitary LTRs are also present

within our genome. These sequences, which include about

10 000 copies of solitary LTRs pertaining to HERV-K, have

arisen through recombination events that could have “de-

leted” harmful retroviral genes. It is noteworthy that LTRs are

located near MHC genes and thus could modulate antigen

expression, particularly in individuals who possess identical

MHC genes but different LTRs.73 With reference to auto-

immune diseases, the presence of an HERV-K LTR in the

HLA-DQ region (DQ-LTR3) has been shown to have a strong

influence on the occurrence of IDDM.74 Furthermore, the

presence of DQ-LTR on HLA-DQB1*0302 and its absence on

DQB1*0201 are independent risk markers for IDDM. The pres-

ence of DQ-LTR has also been shown to be a marker for

increased susceptibility to RA in subjects with the HLA-DR4-

DQB1*0301 and HLA-DR4-DQB1*0302 haplotypes.75 In addi-

tion, polymorphisms within LTRs could be important because

changes in sequence could greatly affect promoter activity.

Interestingly, three allelic forms of the LTR of HERV-R (ERV3)

have been shown, although no link could be associated with

disease, in this case multiple sclerosis.76 The fact that LTRs

interact with chemicals (such as carbon tetrachloride),

hormones, and environmental agents and function as

switches for alternative splicing (for example, the short and

long forms of the human leptin receptor77) highlights the

importance of these elements. In addition, their location

(adjacent to MHC or T cell receptor genes) and transactivation

by helper viruses7 warrants further research into their poten-

tial role in autoimmune diseases and cancer.

Plasticity
HERVs constitute only a part of what are termed “transpos-

able elements”, a generic term encompassing both DNA

sequences that can be excised and reinserted at another site

and retroelements. The term retroelements describes any

sequence that can replicate itself by a process involving reverse

transcription, and includes HERVs, retrotransposons (which

mostly lack an env gene), retroposons, and retrosequences.

Retroposons and retrosequences are exemplified by long

stretches of related sequences (up to 6 kbp) called LINES and

very short interspersed repeat elements of about 300 bp,

respectively. Thus far, from being a fixed, immutable structure,

the genome of a eukaryotic cell can harbour many sequences

that move from one site on a chromosome to a completely dif-

ferent position. This phenomenon of plasticity is considered

important because it permits rapid changes in our genome

that could not be afforded by mutations alone. Furthermore,

retroelements may carry regulatory sequences (such as

enhancers and promoters) to new sites in the genome and

thus alter the expression of existing adjacent genes.78 Of

course, there remains a potential to disrupt genes by insertion

mutation and produce defective and/or truncated products, as

has been highlighted by Kazazian, who reported cases of

human genetic disease caused by the random insertion of

LINES.79

PREMATURE STOP CODONS
It is known that many HERVs possess premature stop codons

and of course the RNA products of truncated genes may well

be eliminated before protein translation.80 However, examples

of premature stop codons that result in human disease by the

production of a truncated protein product have been demon-

strated in cases of the DNA repair disorder xeroderma

pigmentosum81 and also in leukaemia.82 In addition, approxi-

mately 5% of cystic fibrosis cases are caused by premature ter-

mination codons. Interestingly, some aminoglycoside antibiot-

ics appear to suppress stop codons in several organisms.

Howard and colleagues83 demonstrated this effect in cell

cultures that expressed constructs carrying two different pre-

mature stop codons within the cystic fibrosis gene (CFTR).

Treatment with antibiotic produced a full length CFTR: the

physiological suppression of the premature stop codon was

thought to result from a mispairing of an amino-acyl tRNA

that successfully bound to a stop codon. The importance of

this observation is that HERVs, despite possessing premature

stop codons, may have the potential to produce truncated or

full length products that are fundamental to the mechanisms

of molecular mimicry, aberrant expression of products, and

the stimulation of T cells through superantigen motifs.84

CONCLUSIONS
This article has provided an overview of a complex topic that

may have ramifications in host protection, cancer, and

autoimmunity. Ultimately, are HERVs friends or foes? In con-

ferring a biological advantage, HERVs (and solitary LTRs) may

indeed be beneficial. Their role in immunological homeostasis

and perhaps protection against exogenous retroviruses is

intriguing. Alternatively, HERV insertion mutation, molecular

mimicry, superantigen motifs, and recombination with other

viruses could be responsible for the development and

pathology of disease. An additional aspect is whether the

presence of HERV peptides during ontogeny culminates with

a hole in the immune repertoire. As a result, peptides with

similarity to HIV-CTL sequences could be more dangerous to a

given individual.
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“An additional aspect is whether the presence of HERV
peptides during ontogeny culminates with a hole in the
immune repertoire”

Clearly, there is a need for multicentre studies to ascertain

firm associations between HERV(s) and autoimmune disease

states and certain cancers. In particular “gene chip” technolo-

gies will no doubt relate HERV expression with disease and

pathological progression. Transcription of individual HERVs or

the coordinated expression of HERVs, although important,

must be balanced against expression found in normal tissues.

Consequently, studies of HERV/LTR polymorphisms, transacti-

vation by helper viruses (or other triggers), and the role of full

length or spliced transcripts may provide further knowledge of

these viruses. In addition, there is a requirement for a panel of

readily available antibody reagents (for example, monoclonal

antibodies, recombinant phage antibodies) to determine

retroviral products at the site of disease. No doubt the field of

HERV research will continue to accelerate so that we can fully

ascertain the consequences of renegade endogenous retro-

viruses and their transfer in xenotransplanation.85 86
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