
REVIEW

Genetic vulnerability following traumatic brain injury: the
role of apolipoprotein E
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Apolipoprotein E (APOE) is thought to be responsible for
the transportation of lipids within the brain, maintaining
structural integrity of the microtubule within the neurone,
and assisting with neural transmission. Possession of the
APOE e4 allele has also been shown to influence
neuropathological findings in patients who die from
traumatic brain injury, including the accumulation of
amyloid β protein. Previous clinical studies reporting
varying outcome severities of traumatic brain injury,
including cognitive and functional recovery, all support
the notion that APOE e4 allele possession is associated
with an unfavourable outcome. Evidence from
experimental and clinical brain injury studies confirms
that APOE plays an important role in the response of the
brain to injury.
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Genetic differences in the ability of the

brain to form new connections and

undergo neuroplasticity may explain vari-

ation in outcome after traumatic brain injury.

Recently, an increasing appreciation of the role of

apolipoprotein E (APOE) in modifying neurologi-

cal outcome after traumatic brain injury has been

reported, although the mechanisms by which this

occurs remain poorly defined. In this brief review,

we will discuss the current status of APOE

polymorphism and its role in the outcome of

patients following traumatic brain injury.

APOLIPOPROTEIN E
Site of synthesis
APOE is mainly synthesised by astrocytes packed

together with cholesterol and phospholipid to

form lipid–protein complexes, which are then

released into the extracellular space. These

complexes bind to APOE receptors on the

surfaces of nerve cells, which are internalised into

the cell, thereby providing a mechanism for the

maintenance and repair of cell membranes, the

growth of neurites, and synaptogenesis.1

“Apolipoprotein E assumes the major role
in lipid transport in the cerebrospinal fluid”

APOE is the major apolipoprotein in human

cerebrospinal fluid, existing as small spherical,

discoidal lipoproteins that transport cholesterol

and phospholipid. Unlike plasma, in which apoli-

poprotein B (APOB) containing low density lipo-

protein (LDL) is the major lipoprotein involved in

lipid transport, the cerebrospinal fluid lacks

APOB and LDL, so that APOE assumes the major

role in lipid transport in this medium.

Functions
APOE is thought to be responsible for the

transportation of lipids within the brain and

maintaining the structural integrity of the micro-

tubule within the neurone; it may also assist with

neural transmission.2–4 Recent reports from trans-

genic closed traumatic brain injury models also

support the role of APOE in the inflammatory

response and neuronal repair mechanisms fol-

lowing traumatic brain injury.5 6

Apart from being involved in lipid redistribu-

tion, both among the cells of different organs and

among the cells within an organ or tissue, APOE

has other functions unrelated to lipid transport,

as listed below.

• The extremely high concentrations of APOE

produced by macrophages in the distal stump

of the rat sciatic nerve and the expression of

LDL receptors on the growing tips of neurites

and Schwann cells strongly suggest a role for

APOE in nerve regeneration. Other speculative

roles include the suggestion that APOE could

be a neurotrophic factor involved in one of sev-

eral events required for nerve survival and

repair.7

• APOE is postulated to be involved in smooth

muscle cell proliferation, differentiation, or

both.

• APOE modulates the immune response and

further investigations may provide an insight

into the effects of lipoproteins on tumorigen-

esis.

Genetic polymorphism
Mature APOE is a 299 amino acid protein, with a

relative molecular mass of 34 000 Da, which is the

product of a single gene. The APOE gene spans 3.7

kilobases, has four exons, and is located on chro-

mosome 19.8 APOE polymorphism was estab-

lished using isoelectric focusing and confirmed by

two dimensional electrophoresis.9 Three major

isoforms of APOE—referred to as APOE 2, APOE

3, and APOE 4—are products of three alleles (e2,

e3, and e4) at a single gene locus, and occur with

a frequency of 7%, 78%, and 15%, respectively, in

white populations.10 Three homozygous pheno-

types (APOE 2/2, APOE 3/3, and APOE 4/4) and

three heterozygous phenotypes (APOE 2/3, APOE
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3/4, and APOE 2/4) arise from the expression of any two of the

three alleles. APOE 4 displays normal binding but is associated

with raised plasma cholesterol and LDL concentrations.8 9

APOE polymorphism is differentiated by analysis of the

amino acid sequences of the three isoforms. Amino acid sub-

stitutions account for the differences.

Variation in prevalence rates of the APOE e4 allele
In Western population groups, APOE e4 has been shown to

influence the risk of development of Alzheimer’s disease.

However the influence of APOE e4 on the development of

Alzheimer’s disease in African Americans is still not clear, with

conflicting reports showing either little or no increase11–13 or

conversely that Alzheimer’s disease in African Americans is

associated with the e4 allele.14 Human APOE exhibits genetic

polymorphism with varying prevalence rates in all popula-

tions examined to date.15–19 Numerous reports document the

higher frequency of APOE e4 in people of African heritage,17–19

even in population groups as far south as Southern Africa.20 21

Surprisingly, the association of APOE e4 and Alzheimer’s

disease has not been found in sub-Saharan populations of

African heritage.20–26 The Indianapolis-Ibadan dementia

project—a longitudinal population based study—clearly

showed the striking difference in the incidence of Alzheimer’s

disease and dementia between African Americans in a devel-

oped community and black Africans in a developing

community.23 25 This led Corbo and Scacchi15 to propose that

the exposure of the APOE e4 gene to contemporary

environmental conditions (for example, Western diets, longer

life spans) may have rendered APOE e4 a susceptible allele to

influence coronary artery disease and Alzheimer’s disease. The

absence of the association of APOE e4 with coronary heart

disease20 and Alzheimer’s disease in sub-Saharan Africans,

and its presence in African Americans, seems to confirm this

hypothesis.

TRAUMATIC BRAIN INJURY OUTCOME AND
APOLIPOPROTEIN e4 ALLELE
The link between Alzheimer’s disease, traumatic brain
injury outcome, and the APOE e4 allele
APOE e4 has important direct effects on the nervous system.

Possession of the APOE e4 allele has been shown to result in a

greater propensity to develop age related cognitive

impairment,27 28 a decrease in the synapse–neurone ratio,29 and

increased susceptibility to exogenous neurotoxins,30 and

hippocampal atrophy.31 It has now been shown that the APOE

e4 isoform is associated with an increased risk of late onset

familial and sporadic Alzheimer’s disease in Western popula-

tions, which results in the standard molecular and cellular

neuropathology of Alzheimer’s disease.32 33 In addition, many

epidemiological studies have identified a history of a previous

head injury as an important environmental risk factor for the

development of Alzheimer’s disease.34 35 Mayeux and

colleagues36 showed that a history of a previous head injury

and APOE e4 interact synergistically; there was a 10 fold

increase in the risk of Alzheimer’s disease when both APOE e4

and a history of traumatic head injury were present compared

with a twofold increase in risk with APOE e4 alone. Additional

evidence has been provided by a study on dementia

pugilistica, which is a progressive dementia disorder similar to

Alzheimer’s disease, found in boxers and in patients who have

been subjected to repeated head injury. A worse outcome was

found in a group of boxers with the e4 allele compared with

those without.37

“The APOE e4 isoform is associated with an increased
risk of late onset familial and sporadic Alzheimer’s
disease in Western populations, which results in the
standard molecular and cellular neuropathology of
Alzheimer’s disease”

Although the mechanisms underlying these effects are

unclear, evidence suggests that both APOE e4 and traumatic

brain injury may influence the risk of Alzheimer’s disease via

interactions with amyloid β protein. Deposition of the amyloid

β protein, a molecule proteolytically cleaved from the precur-

sor molecule, amyloid precursor protein (APP), plays a key role

in the pathogenesis of Alzheimer’s disease. There is now in

vivo evidence linking APOE e4 with amyloid β protein

deposition.38 APOE is associated with reduced growth and the

branching of neurites in cell culture, an effect that is mediated

by the LDL receptor related protein, which mediates the entry

of APOE into neurones, and is also increased after injury.

APOE e4 also binds less aggressively to cytoskeletal proteins

and amyloid β protein, compared with the other isoforms of

APOE, reducing any potential protective effect. APOE e4 also

promotes more rapid aggregation of amyloid β protein into

amyloid fibrils in vitro.39 40

The APOE e4 allele and human traumatic brain injury
outcome
It has been reported that head injury triggers amyloid β pro-

tein deposition in those with genetic susceptibility conferred

by APOE e4, and that amyloid β protein deposition is recorded

in one third of severe head injured patients at necropsy.38 It has

been postulated that head injury related deposition of amyloid

β protein in those who survive may be followed by the devel-

opment of the full spectrum of Alzheimer’s disease pathology

later in life.38

The Glasgow group were the first to report in a clinical set-

ting the influence of APOE e4 and a poor outcome following

traumatic brain injury.41 Since then, numerous clinical studies

in all types of traumatic brain injury have supported the

association of APOE e4 allele possession with an unfavourable

outcome.41–44 It was reported recently that the possession of the

APOE e4 allele predisposes a patient to a larger sized intracer-

ebral haematoma.45

Similarly, possession of the APOE e4 allele has also been

shown to be associated with a poor outcome following

spontaneous non-aneurysmal intracerebral haemorrhage,46

haemorrhage associated with amyloid angiopathy,47–49 sub-

arachnoid haemorrhage,50 and, more recently, an increased

risk of developing cerebral amyloid angiopathy in patients

recovering from traumatic brain injury.51

“It has been reported that head injury triggers amyloid
β protein deposition in those with genetic susceptibility
conferred by APOE e4”

Presently, very few reports are available documenting the

effect of APOE e4 status and human traumatic brain injury.

Previous reported studies were on small cohorts and are gen-

erally institutionally based, with very few studies looking at

moderate to severe traumatic brain injury. Furthermore, most

if not all, studies reported to date were conducted in white

population groups, with a predominance of males.

FUTURE DIRECTIONS
Unfortunately, traumatic brain injury is ubiquitous and remains

a major cause of considerable morbidity, neuropsychological

sequelae, and death. Despite immense advances in the manage-

ment of clinical traumatic brain injury, no treatment exists to

date that can reverse the sequelae of the molecular and cellular

mechanisms that lead to post-traumatic death. Understanding

the pathobiology of traumatic brain injury is pivotal to halting

and reversing the devastating effects of secondary brain injury.

Currently, research is primarily focused on the cellular and sub-

cellular mechanisms that are believed to hold the key to under-

standing the complex networks or cascades unleashed at the

time of insult. A brief discussion on potential avenues for future

investigation is provided.
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Genetically engineered animal models of traumatic
brain injury
This form of technology has the potential to recreate many

clinical and pathological aspects of traumatic brain injury.

Typically, it involves the artificial expression or targeted

deletion (knockout) of a specific gene. Thus, genetically engi-

neered animals offer us a unique opportunity to evaluate

mechanistic links in specific defined disease entities and pro-

vide a basis for the evaluation of potentially effective pharma-

cological treatment paradigms.

To add to the complexity of this field, certain strains of

transgenic mice will accumulate APP following traumatic

brain injury, but this has not been associated with amyloid β
protein plaque formation, probably because of differences in

amino acid composition between different species.52 Following

cortical contusion injury in APP transgenic yeast artificial

chromosome mice, Murai et al found no post-traumatic differ-

ences in cognition or motor deficits.53 However, when a second

strain of mice was used, which expressed a mutant APP mini-

gene driven by a platelet derived growth factor promoter, the

mice overexpressed mutant APP 10-fold compared with

control mice, and plaques were found at 6 months.54 When

exposed to cortical contusion injury, these mice showed exac-

erbation of their cognitive impairments and produced an

increase in hippocampal amyloid β protein 1–40 and amyloid

β protein 1–42 (two principal forms of β amyloid peptide gen-

erated from APP degradation), with 80% cell loss in the CA3

region in the injured hemisphere, leading the investigators to

postulate the “two hit hypothesis”. The first insult or hit is the

genetic vulnerability (high concentration of amyloid β protein,

which is influenced by the individual’s E4 allele status), which

is only manifested after the a second independent epigenetic

event or insult, such as traumatic brain injury.55

However, Uryu et al were the first to provide the mechanis-

tic link between Alzheimer’s disease and traumatic brain

injury.56 Using transgenic mouse models, they were able to

prove that repetitive traumatic brain injury accelerates brain

amyloid β protein accumulation and oxidative stress, which

they suggested could act synergistically to drive the process of

Alzheimer’s disease. These studies also confirmed previous

epidemiological reports suggesting that the more severe the

brain injury, the greater the possibility of developing

Alzheimer’s disease,57 and that lipid peroxidation is enhanced

by traumatic brain injury and is linked to increased amyloid

accumulation and deposition. Other transgenic mouse model

studies have also confirmed the role of APOE e4 in influencing

the neurodegenerative cascade following traumatic brain

injury via the effect of amyloid β protein.58 59 Many studies

have suggested that oxidative stress promotes amyloid

deposition and fibril formation.56 60 61

Ethnic and regional differences: influence on APOE
polymorphism
As previously mentioned, numerous reports have clearly

documented the differences in the prevalence rate of the

APOE e4 allele. Furthermore, all reports documenting the

effect of the APOE e4 allele on traumatic brain injury outcome

have been performed almost exclusively in white populations

or those derived from white individuals. Contrary to reports

from developed regions, it has been reported recently that the

APOE e4 allele has no significant effect on traumatic brain

injury outcome in an exclusive black African cohort with

homogenous traumatic brain injury.62

This racial difference in the effect of the expression of the

APOE e4 allele on traumatic brain injury outcome may be

related to: (1) interpopulation differences in the sequence

variation underlying the three protein isoforms of APOE; (2)

the presence of other modifier gene(s); or (3) more

importantly, gene–environment interactions that play an

important role in modifying the response to traumatic brain

injury. Despite the higher frequency of the APOE e4 allele in

sub-Saharan population groups (pygmies, Khoi-San (bush-

men), and black Africans),15 19–21 24 63 64 the low prevalence of

Alzheimer’s disease and the non-significant effect of the APOE

e4 allele on closed traumatic brain injury in black Africans

supports the susceptibility of the APOE e4 allele to varying

contemporary environmental conditions.

Sex based differences and traumatic brain injury
outcome: role of APOE polymorphism
Current knowledge of the central nervous system response to

traumatic brain injury, in addition to potential treatments, are

limited primarily to male subjects. Recent attention to sex

based variation following experimental traumatic brain injury

has revealed striking differences between the sexes.65 66 It has

been postulated that the reduced vulnerability of the female

brain may result from the neuroprotective effects of

oestrogen67–69 and progesterone.70 71

Currently, it is not clear whether the effects of oestrogen are

receptor or non-genomic based. Recently, it has been shown

that Premarin, which is widely used for hormonal replace-

ment therapy, has a greater effect on APOE gene expression

than glial fibrillary acid protein expression in mixed glial cell

cultures.72 This not only adds further support for the

neuroprotective effect of oestrogens, but also serves as

evidence that APOE induction supports neurite outgrowth as

compared with glial fibrillary acid protein induction, which

inhibits neurite outgrowth, thereby promoting glial scarring.

To date, no clinical report exists documenting the influence of

APOE on sex differences.

LINK BETWEEN APOE AND TRAUMATIC BRAIN
INJURY OUTCOME: CURRENT SHORTFALLS
Evidence from experimental and clinical traumatic brain

injury studies has confirmed the important role that APOE

plays in the inflammatory response and neuronal repair

mechanisms following traumatic brain injury. Sporadic

clinical reports have supported the association between APOE

e4 status and human traumatic brain injury outcome.

Currently, there are many unanswered questions. Is the effect

of APOE e4 on traumatic brain injury outcome confined to

white or white derived population groups only? It is presently

unknown whether APOE polymorphism is consistent in

modifying the genetic response to traumatic brain injury in all

major racial groups and in different geographical regions.

Given the high interpopulation and regional variation,

together with the genetic susceptibility of the APOE e4 allele

to contemporary environmental factors, further clinical stud-

ies are warranted. In addition, it is unknown presently how

observations recorded in transgenic animal models will trans-

late to human conditions.

How does the APOE e4 allele influence traumatic brain

injury severity, or the type of injury—diffuse versus focal?

What is the effect of APOE e4 on sex based human traumatic

brain injury outcome? Is this effect confined to adults only or

does it apply to a developing brain also, and what is the influ-

ence of APOE e4 status on injury to other parts of the

neuraxis, such as the spinal cord?

“It is presently unknown whether APOE polymorphism
is consistent in modifying the genetic response to
traumatic brain injury in all major racial groups and in
different geographical regions”

Another alarming facet of APOE status is that the prognos-

tication of traumatic brain injury outcome may have serious

medicolegal and financial ramifications for patients and their

families. It may be possible in the future that patients are

biased by insurance companies according to their expression
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of genetic and molecular markers. In addition, insurance

companies may preclude an individual on the basis of his or

her APOE e4 status from pursuing certain high risk sports or

occupations where the potential for traumatic brain injury is

greater. The ramifications of APOE e4 status may assume a

whole new dimension with “genetic stereotyping” taking on

greater importance in the future.

CONCLUSION
As a result of recent reports, the role of APOE e4 in contribut-

ing to the development of Alzheimer’s disease is gaining

increasing importance. However, APOE genotyping is not yet

part of current medical practice. Undoubtedly, despite the

extensive investigation of APOE in lipid metabolism, ischae-

mic cardiovascular disease, and Alzheimer’s disease, more

investigations are needed to determine a clear cut effect of

APOE e4 status on human traumatic brain injury in all its fac-

ets. A greater research effort needs to be undertaken and the

interest in APOE status and traumatic brain injury should be

cultivated more extensively and not confined to a few selected

groups. Neurosurgeons, in particular, are uniquely placed to

play a more meaningful role in this quest to determine the

effect of APOE status on traumatic brain injury outcome.
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Take home messages

• Apolipoprotein E (APOE) e4 has been shown to contribute
to the development of Alzheimer’s disease, although there
appear to be racial and geographical variations, and this
may not be true for African populations

• This variation may the result of Western environmental con-
ditions, such as diet and longer life spans

• APOE e4 and traumatic brain injury appear to act synergis-
tically in the development of Alzheimer’s disease

• APOE e4 is associated with a poor outcome in traumatic
brain injury, but again there may be racial and geographi-
cal variations

• The mechanisms underlying these effects are unclear but the
amyloid β protein is thought to be involved

• More research into APOE e4 and traumatic brain injury is
needed
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