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Epstein-Barr virus encoded latent membrane protein 1
(LMP1) and TNF receptor associated factors (TRAF):
colocalisation of LMP1 and TRAF1 in primary EBV
infection and in EBV associated Hodgkin lymphoma
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Aims: Epstein-Barr virus (EBV) immortalises B cells in vitro and is associated with several malignancies.
Most phenotypic effects of EBV are mediated by latent membrane protein 1 (LMP1), which interacts
with tumour necrosis factor receptor associated factors (TRAFs) to activate NF-κB. This study examines
TRAF1 and LMP1 expression in EBV associated lymphoproliferations.
Methods: TRAF1 expression was investigated in 26 Hodgkin lymphomas (HL; 18 EBV+, eight EBV−),
seven EBV+ Burkitt lymphomas (BL), two infectious mononucleosis (IM) tonsils, and lymphoreticular tis-
sue from eight chronic virus carriers. Seven anaplastic large cell lymphomas and 10 follicular B cell
lymphomas were also studied. Colocalisation of TRAF1 and LMP1 was studied by immunofluorescent
double labelling and confocal laser microscopy.
Results: TRAF1 colocalises with LMP1 in EBV infected cells in IM. EBV positive lymphocytes from
chronic virus carriers were negative for TRAF1 and LMP1. In HL biopsies, TRAF1 was strongly
expressed independently of EBV status, whereas all BL cases were TRAF1−. In EBV+ HL cases, TRAF1
colocalised with LMP1. Eight of 10 follicular lymphomas expressed TRAF1 in centroblast-like cells. Four
of seven anaplastic large cell lymphomas weakly expressed TRAF1.
Conclusions: These results suggest that in non-neoplastic lymphocytes, TRAF1 expression is depend-
ent on the presence of LMP1, and that in IM B cells in vivo, LMP1 associated signalling pathways are
active. In HL, TRAF1 is expressed independently of EBV status, probably because of constitutive NF-κB
activation. The function of TRAF1 in HL remains to be determined.

The Epstein-Barr virus (EBV) can infect human B cells in
vitro, transforming them into permanently growing
lymphoblastoid cell lines (LCLs).1 In LCL cells, the virus is

present mainly as a latent infection and a limited set of latent
viral gene products is expressed. These include two non-
polyadenylated small nuclear RNAs (EBER1 and EBER2), six
nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B,
EBNA3C, and EBNA-LP), and three latent membrane proteins
(LMP1, LMP2A, and LMP2B).1 This type of latent EBV
infection is termed latency III.1 Although several of these viral
proteins are required for B cell immortalisation, LMP1 has
attracted most attention because of its ability to transform
rodent fibroblasts.2 In addition, LMP1 mediates several
phenotypic effects in B cells and epithelial cells, including
upregulation of activation markers (for example, CD21, CD23,
CD30, and CD40), adhesion molecules (for example, intercel-
lular adhesion molecule 1, leucocyte function antigen 1
(LFA1), and LFA3), and antiapoptotic factors (for example,
Bcl2 and A20).3–9 LMP1 aggregates constitutively at the
cytoplasmic membrane and mimics a ligand independent
member of the tumour necrosis factor (TNF) receptor family,
similar but not identical to CD40.10–13 The effects of LMP1 are
dependent on two regions located at the C-terminal intracyto-
plasmic region of the protein, termed C-terminal activating
regions (CTAR1 and CTAR2).14 CTAR1 activates nuclear factor
κB (NF-κB) signalling through interaction with the TNF
receptor associated factors (TRAF1, TRAF2, and TRAF5),
whereas TRAF3 appears to be a negative regulator of this
effect.12 15 CTAR2 interacts with the TNF receptor associated
death domain (TRADD) protein, also inducing NF-κB
activation.16 Other signalling cascades activated by LMP1 are
the Jun N-terminal kinase and the p38 mitogen activated

kinase pathways.17–20 In B cells in vitro, most TRAF1 and

TRAF3 molecules and approximately 5% of TRAF2 molecules

are associated with LMP1.15 Importantly, in B cells CTAR1

appears to recruit TRAF2 largely through TRAF1, as a TRAF1–

TRAF2 heterodimer.21 TRAF1 and TRAF3 do not interact with

CTAR2, whereas TRAF2 appears to be indirectly recruited to

CTAR2 through TRADD.16 Interestingly, TRAF1 is also an

NF-κB target gene, being upregulated by LMP1 and CD40

signalling.21 22

In addition to EBV immortalised B cells in vitro, LMP1

expression has been detected in several EBV associated

human diseases. These include infectious mononucleosis

(IM) and immunosuppression related lymphoproliferations

that express a latency III pattern of viral latent genes as

seen in LCLs.1 In addition, tumour cells of EBV associated

cases of Hodgkin lymphoma (HL) express LMP1 in the

context of a latency II pattern (EBNA1 positive, other

EBNAs negative, and LMP positive), whereas the tumour
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cells of endemic Burkitt lymphoma (BL) usually display a

latency I pattern (EBNA1 positive, other EBNAs negative,

LMP negative).1 These findings suggest that LMP1 associated

signalling pathways may be important for the pathogenesis

of some EBV associated tumours. In keeping with this

notion, Liebowitz has shown that LMP1 colocalises and

coimmunoprecipitates with TRAF1 and TRAF3 in immuno-

suppression related lymphoproliferations.23 Several groups

have recently demonstrated the expression of TRAF1 in

the Hodgkin and Reed-Sternberg (HRS) cells of HL.24–27

In addition, Murray et al have demonstrated colocalisation

of TRAF1 and TRAF2 with LMP1 in EBV associated

HL.27

“In addition to EBV immortalised B cells in vitro, latent
membrane protein 1 expression has been detected in
several EBV associated human diseases”

Here, we have used newly generated monoclonal antibodies

to study the expression of TRAF1 in EBV associated disorders

with different types of viral latency. Double labelling

immunofluorescence and confocal laser microscopy were used

to find out whether TRAF1 and LMP1 colocalise in these

lesions. Furthermore, we have used the RNase protection

assay to investigate the expression of TRAF family members in

HL derived cell lines.

MATERIALS AND METHODS
Tissues
Formalin fixed and paraffin wax embedded biopsy specimens

from 26 cases of classic HL were retrieved from the files of the

Institute for Pathology, Erlangen. These included 12 patients

with nodular sclerosis and 14 patients with mixed cellularity.

Eighteen cases of HL were EBV positive and LMP1 positive.28

In addition, paraffin wax blocks from seven cases of EBV

positive endemic BL,29 seven cases of anaplastic large cell

(ALC) lymphoma, and 10 cases of follicular B cell lymphoma

were also available. Finally, tissue blocks from two tonsils

taken from patients with acute IM and from seven lymph

nodes and one tonsil from chronic virus carriers were

analysed.

Figure 1 (A) Double labelling immunohistochemistry and in situ hybridisation show tumour necrosis factor receptor associated factor 1
(TRAF1) expression (red staining) in numerous Epstein-Barr virus (EBV) positive (black grains over nuclei of infected cells) cells in infectious
mononucleosis, whereas (B) isolated EBV positive cells in chronic virus carriers are TRAF1 negative. (C, D) Immunohistology reveals TRAF1
expression (red labelling) in Hodgkin and Reed-Sternberg cells in cases of Hodgkin lymphoma. (E) In follicular lymphomas, scattered cells at the
margin of the neoplastic follicles express TRAF1. (F) Anaplastic large cell lymphomas show weak expression of TRAF1 in a proportion of tumour
cells. Note that C, D, E, and F illustrate immunohistochemical staining without simultaneous EBV specific in situ hybridisation.
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Monoclonal antibodies, immunohistochemistry, and in
situ hybridisation
Monoclonal antibodies against TRAF1 were generated by

injecting the TRAF1–GST (glutathione-S-transferase) fusion

protein into LOU/C rats. Fusion of the myeloma cell line

P3X63–Ag8.653 with rat immune spleen cells was performed

according to a standard procedure. Hybridoma supernatants

were tested in a solid phase immunoassay using the

TRAF1–GST fusion protein. A TRAF2–GST fusion protein was

used as a negative control. TRAF1-1F3 (rat IgG2a) and

TRAF1-1H11 (rat IgG2a) reacted selectively in western blot

analysis with TRAF1 and were therefore used in our study. The

monoclonal antibodies CS1–4, specific for LMP1, were

obtained from Dako (Glostrup, Denmark). The TRAF1 specific

monoclonal antibody, H-3, was purchased from Santa Cruz,

Heidelberg, Germany.

Paraffin wax embedded sections were subjected to micro-

wave antigen retrieval using citrate buffer as described

previously.30 After incubation with appropriately diluted

primary antibodies, sections were subjected to immunohisto-

chemistry using biotin labelled rabbit antirat or rabbit

antimouse immunoglobulins, as appropriate, followed by

incubation with a streptavidin biotinylated alkaline phos-

phatase complex (ABC-AP; Dako). Alkaline phosphatase was

developed using fast red (Sigma, Steinheim, Germany) as a

chromogen. The detection of bound H-3 antibody required the

application of tyramide signal amplification, as described

previously.30

In situ hybridisation for the detection of the EBERs was

carried out as described previously using 35S labelled or

digoxigenin labelled RNA probes.30 Double labelling with anti-

TRAF1 antibodies and 35S labelled EBER specific probes was

carried out as described previously.31

For colocalisation of LMP1 and TRAF1, LMP1 was detected

using fluorescein isothiocyanate labelled goat antimouse

immunoglobulins (Dianova, Hamburg, Germany). TRAF1 was

visualised with a biotin labelled rabbit antirat immunoglobu-

lin, followed by incubation with Cy5 labelled streptavidin

(Dianova). Stained sections were evaluated by confocal laser

microscopy.

Cell lines
The HL derived cell lines, L428 and HDLM2, were obtained

from Deutsche Sammlung von Mikroorganismen und Zellkul-

turen, Braunschweig, Germany.

RNase protection assay
Total RNA was extracted from two HL derived cell lines, L428

and HDLM2, using the RNeasy midi kit (Qiagen, Hilden, Ger-

many). The RNase protection assay (RPA) was carried out

using a Riboquant multiprobe template set (hAPO-5b; BD

Pharmingen, Heidelberg, Germany), according to the manu-

facturer’s instructions. The template set consisted of DNA

templates specific for TRAF1, TRAF2, TRAF3, TRAF4, TRAF5,

TRAF6, I-TRAF, and TRAF interacting protein (TRIP). HeLa

RNA was supplied by the manufacturer as a control. A 10 µg

aliquot of total RNA and 6 × 105 counts/minute of labelled

probe were used for hybridisation. 33P labelled protected frag-

ments were resolved by electrophoresis in 5% polyacrylamide

Tris/acetate/EDTA/urea gels. Gels were dried and exposed to a

Figure 2 Immunofluorescence staining for (A, B) latent membrane protein 1 (LMP1; green) and for (C, D) tumour necrosis factor receptor
associated factor (TRAF1; red) shows similar patterns of labelling and overlaying the images reveals colocalisation of the signals (yellow) in
most cells in (A, C, E) infectious mononucleosis and (B, D, F) an Epstein-Barr virus positive case of Hodgkin lymphoma. Some additional red
staining is probably caused by the expression of TRAF1 in interdigitating reticulum cells.
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phosphoroimaging screen and hybridisation signals were

quantified using the Tina program (Raytest Isotopenmess-

geräte, Straubenhardt, Germany).

RESULTS
TRAF1 expression in primary and persistent EBV
infection
In agreement with a previous report, staining of paraffin wax

embedded sections from hyperplastic tonsils revealed the

expression of TRAF1 in interdigitating reticulum cells (IDC)

and in scattered germinal centre centroblasts (not shown).32

Moreover, both TRAF1 specific antibodies showed identical

staining patterns (as in all other experiments). EBER specific

in situ hybridisation revealed numerous EBV infected

lymphoid cells in two tonsils from patients with acute IM, as

reported previously (fig 1A).33 In comparison, few EBV positive

cells were detected in lymphoid tissues from chronic virus

carriers (fig 1B). TRAF1 immunostaining of the two IM tonsils

resulted in the staining of numerous extrafollicular lymphoid

blasts in addition to IDCs. Double staining experiments

revealed that this reactivity was restricted to the EBV infected

cells, as demonstrated by EBER specific in situ hybridisation

(fig 1A). Quantitative enumeration showed that 36% and 39%

of EBER positive cells coexpressed TRAF1. Double immuno-

fluorescence and confocal laser microscopy revealed that, with

the exception of IDC, the TRAF1 expressing cell population

was largely identical to the LMP1 positive population (fig

2A,B). Moreover, overlaying the images showed colocalisation

of the TRAF1 and the LMP1 specific signals (fig 2C). In

contrast, most EBER expressing cells detected in tissues from

chronic virus carriers were LMP1 negative and also did not

express TRAF1 (fig 1B). However, there were isolated EBER

positive cells coexpressing TRAF1 even in tissues from chronic

virus carriers. Fifteen EBER positive cells coexpressing TRAF1

were identified in all eight cases out of a total of 670 EBER

positive cells (2.2%) counted.

TRAF expression in HD and non-Hodgkin lymphoma
Using immunohistochemistry with the monoclonal antibod-

ies TRAF1-1F3 and TRAF1-1H11, TRAF1 expression was

detected in the HRS cells from all classic HL cases (fig 1C,D,

both illustrated cases were EBV positive). Between 20% and, in

most cases, over 80% of tumour cells were labelled. The

expression of TRAF1 in HRS cells was independent of EBV

infection and LMP1 expression, both with regard to the stain-

ing intensity and to the number of labelled cells. In addition to

HRS cells, variable numbers of interdigitating cells were

stained. The patterns of reactivity seen with both TRAF1 spe-

cific antibodies were virtually identical. In comparison, stain-

ing with the commercially available TRAF1 specific reagent,

H-3, yielded positive staining of HRS cells in 17 of the 24 cases

analysed (not shown). In four cases, labelling of HRS cells

could not be assessed because of excessive background label-

ling, and in three cases HRS cells were negative, although

TRAF1 specific labelling was detected using the monoclonal

antibodies TRAF1-1F3 and TRAF1-1H11 (not shown).

Double staining immunofluorescence revealed colocalisa-

tion of TRAF1 with LMP1 in EBV positive HL cases (fig 2D–F).

RPA analysis revealed a high degree of TRAF1 expression in

both HL derived cell lines. All other members of the TRAF

family were expressed to a lower degree (fig 3; table 1).

Immunohistochemical staining of seven EBV positive BL

cases revealed a complete lack of detectable TRAF1 expression

(not shown). In agreement with a previous report, follicular

lymphomas showed weak to moderate expression of TRAF1 in

centroblast-like cells in the neoplastic follicles in eight of 10

cases (fig 1E).32 Only weak expression of TRAF1 was seen in

four of seven CD30 positive anaplastic large cell lymphomas,

as reported previously (fig 1F).24

DISCUSSION
Ours is the first study to show that in IM EBV infected immu-

noblasts express TRAF1. Moreover, the LMP1 and TRAF1

expressing cell populations were largely identical and TRAF1

was shown to colocalise with LMP1. The fact that TRAF1 is

upregulated by LMP1 and CD40 signalling through NF-κB

and, on the other hand, itself associates with CTAR1 of

LMP1,21 22 34 is consistent with the notion that LMP1 associated

signalling pathways are active during primary EBV infection.

In contrast, most EBV positive cells in tissues from chronic

virus carriers were negative for LMP1 and TRAF1. This is in

agreement with previous studies showing that normal resting

lymphocytes are TRAF1 negative and that TRAF1 expression

in lymphocytes is upregulated by mitogens.35 Thus, the

absence of LMP1 and TRAF1 from EBV positive lymphocytes

in persistent infection is in keeping with the idea that these

cells are mainly resting B cells expressing a very limited

number of viral proteins, if any.36 Therefore, it appears that in

non-neoplastic EBV infected lymphocytes the expression of

Figure 3 Ribonuclease protection assay analysis of TRAF
expression in cell lines derived from Hodgkin lymphoma. The cell
lines analysed were HeLa (cervical carcinoma), HDLM2 (Hodgkin
lymphoma), and L428 (Hodgkin lymphoma). Each unprotected
probe band migrates more slowly than its corresponding protected
band because of flanking sequences in the probe that are not
protected by mRNA.
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TRAF1 is correlated with the detection of LMP1. This conclu-

sion is in agreement with the known ability of LMP1 to

upregulate TRAF1 expression in B cells.21 Moreover, endemic

BL cells, which usually lack detectable LMP1 expression, also

displayed a lack of detectable TRAF1 expression. BL cells con-

sistently express CD40 and respond to CD40 signalling with

NF-κB activation.34 Thus, the absence of detectable TRAF1 in

BL biopsies suggests that CD40 signalling is not active in BL in

vivo.

“By means of RNase protection assay analysis, we
showed that tumour necrosis factor receptor associated
factor 1 (TRAF1) is the most abundantly expressed TRAF
family member in Hodgkin lymphoma derived cell lines”

By means of RPA analysis, we showed that TRAF1 is the most

abundantly expressed TRAF family member in HL derived cell

lines. Previous studies have demonstrated the expression of

TRAF1 RNA and protein in HRS cells of HL,24–27 a finding con-

firmed here both in vitro and in vivo using newly generated

TRAF1 specific monoclonal antibodies. Using RPA analysis, we

showed that HL derived cell lines express TRAF1, TRAF2,

TRAF3, TRAF4, TRAF5, TRAF6, I-TRAF, and low amounts of

TRIP RNA, largely confirming previous studies.37 Dürkop et al
reported the expression of TRAF1 mRNA in HRS cells of all

classic HL cases,24 and the degree of TRAF1 expression was

reported to correlate with EBV infection. Using reverse

transcription polymerase chain reaction of microdissected

HRS cells, Messineo et al detected TRAF1 RNA transcripts in

HRS cells from four of five patients with classic HL.25 Using

immunohistochemistry, Murray et al demonstrated the ex-

pression of TRAF1 in HRS cells in approximately 40% of HL

cases and of TRAF2 in approximately 50% of cases.27 The

expression of TRAF1, but not of TRAF2, correlated with EBV

infection of the HRS cells in this study, in that 61% of EBV

positive HL cases but only 33% of EBV negative cases were

reported to show TRAF1 expression in the HRS cells.27 In

addition, colocalisation of LMP1 and TRAF1 was demon-

strated in six LMP1 positive patients, and LMP1 expression

was shown to upregulate the expression of TRAF1 in an HL

derived cell line, L428.27 Finally, Izban et al reported the

expression of TRAF1 and TRAF2 in HRS cells of all HL cases,

regardless of the EBV status of the tumour cells.26 In

agreement with this last study, we did not find a correlation

between TRAF1 expression and EBV infection in HL because

in our study all cases, regardless of EBV status, showed TRAF1

expression in the HRS cells. The differences between our cur-

rent study and earlier studies may result from the higher sen-

sitivity of our monoclonal antibodies, combined with a lower

background staining, compared with the commercially

available reagents used previously. The detection of TRAF1 in

HRS cells regardless of EBV status is in keeping with several

features of HRS cells. HRS cells express CD40 and upregula-

tion of TRAF1 expression by CD40 signalling has been

demonstrated.22 38 Moreover, constitutive activation of NF-κB

in HRS cells has been reported. It has been shown that the

proliferation and survival of HRS cells depend on NF-κB acti-

vation and that NF-κB inhibition can cause a decline in the

expression of several genes, including TRAF1.37 39

In contrast to other members of the TRAF family, TRAF1

shows a restricted expression pattern in normal tissues, where

it is mainly confined to activated lymphocytes and dendritic

cells.32 In addition, it is the only TRAF molecule lacking the

“really interesting new gene” (RING) domain. TRAF1 binds to

various intracellular proteins, including the TRADD protein,

TRAF associated and NF-κB activator protein, TRIP, NF-κB

inducing kinase, TRAF2, and A20.35 This would seem to

suggest that TRAF1 is functionally important. Indeed, several

studies have suggested an antiapoptotic function of TRAF1.35

Whether this is functionally relevant in HL remains to be

established.
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