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Two genetic maps with additive distances contribute information
about recombination patterns, recombinogenic sequences, and
discovery of genes affecting a particular phenotype. Recombina-
tion is measured in morgans (w) over a single generation in a
linkage map but may cover thousands of generations in a linkage
disequilibrium (LD) map measured in LD units (LDU). We used a
subset of single nucleotide polymorphisms from the HapMap
Project to create a genome-wide map in LDU. Recombination
accounts for 96.8% of the LDU variance in chromosome arms and
92.4% in their deciles. However, deeper analysis shows that
LDU�w, an estimate of the effective bottleneck time (t), is signif-
icantly variable among chromosome arms because (i) the linkage
map is approximated from the Haldane function, then adjusted
toward the Kosambi function that is more accurate but still exag-
gerates w for all chromosomes, especially shorter ones; (ii) the
nonpseudoautosomal region of the X chromosome is subject to
hemizygous selection; and (iii) at resolution less than �40,000
markers per w, there are indeterminacies (holes) in the LD map
reflecting intervals of very high recombination. Selection and
stochastic variation in small regions must have effects, which
remain to be investigated by comparisons among populations.
These considerations suggest an optimal strategy to eliminate
holes quickly, greatly enhance the resolution of sex-specific linkage
maps, and maximize the gain in association mapping by using LD
maps.

effective bottleneck time � HapMap � recombination � interference � selection

A linkage map with 14,759 polymorphic markers has recently
been published, far exceeding the density and coverage of

earlier maps (1). Although the human genome sequence facil-
itated construction of this genetic map by determining the
physical order of its markers, 56% of its intervals have recom-
bination rates of zero. This observation demonstrates the rela-
tively low resolution of the linkage map, for which a costly
solution would be the analysis of many more pedigrees and
markers. Alternatively, sperm typing offers recombination data
of the highest resolution currently available (2) but is feasible
only for very small regions in male chromosomes and does not
reflect historical recombination events. Using the HapMap data
(3) to construct linkage disequilibrium (LD) maps measured in
LD units (LDU) (4) and interpolating them into the sex-specific
linkage map enhances the resolution of the linkage map as a
by-product of our main objective, which is to construct genome-
wide LD maps with additive LDU distances. Such maps are
applicable to association mapping (5, 6), population compari-
sons (7–9), and identification of genomic regions that are
influenced by selection (10). LD mapping has begun the task of
explaining and exploiting complexities (8) that do not affect
application of the Malecot model (4) to create an LD map but
determine how the map should be used to increase resolution of
the linkage map.

Materials and Methods
Genotypic Data for LD Map Construction. The HapMap data (www.
hapmap.org) were obtained on 60 parental DNA samples from
Utah Mormons of northwestern European ancestry collected by

the Centre d’Etude du Polymorphisme Humain. These samples
are a subset of 270 in the database that includes 3 other
populations. A total of 665,335 single nucleotide polymorphism
(SNP) genotypes were downloaded from the September 2004
public release of the HapMap data. A little more than one-
quarter of the downloaded SNPs (25.8%, 171,927) were removed
by a screening procedure that rejected 6,795 SNPs with �2

1 � 10
for the Hardy–Weinberg test (11) or a minor allele frequency
�5% (165,132), leaving 493,408 SNPs for LD map construction.
These SNPs are a subset of the �1 million SNPs included in the
HapMap release after our analysis was completed. Both samples
take their nucleotide position from the July 2003 Golden Path
database (http:��genome.ucsc.edu). The number of SNPs is
expected to reach 3 million next year, with a subsequent increase
likely in an updated physical map.

LD Map Construction. LD maps were constructed by the methods
in the next paragraph for 23 chromosomes, 1–22 and X, covering
98% (2,790 Mb) of the euchromatin. Each SNP has an LD
location, and distance between adjacent SNPs in the LD map was
constrained to a maximum of 3 LDU. Such intervals are called
holes (12), constituting 0.6% of the total map intervals, 17.8%
of the total LDU length, and 2.2% of the total physical length.
Ignoring stochastic variation and selection in the LD map and
errors in estimating the linkage map in morgans (w), the Malecot
model predicts that the ratio of corresponding distances in LD
and linkage maps estimates t, the number of generations over
which recombination has accumulated after one or more pop-
ulation bottlenecks (8). On these assumptions, t would be
constant between chromosomal arms and their deciles. To test
this hypothesis, the initial unit of analysis, neglecting acrocentric
short arms, centromeres, and pseudoautosomal regions, was the
length of a chromosome arm between the first and last physical
locations shared by the two genetic maps (linkage and LD). For
the X chromosome, the two pseudoautosomal regions were
removed and the residual linkage map length in females was
multiplied by 2�3 to allow for the absence of crossing over in
males. LDMAP was used for autosomes and the female X chro-
mosome to calculate pairwise association probabilities � and
information K� under the null hypothesis that � � 0, so that
�2K� � �1

2 (13–15). Haplotype frequencies for pairs of loci were
directly observed for male X chromosomes, and the association
probabilities and information were determined from these
counts. Association probabilities were then obtained as the
weighted mean of sex-specific estimates �m and �f, and the
information was taken as the sum of the weights K�m and K�f.
Default parameters were used to construct LD maps by esti-
mating the length of an interval between adjacent SNPs (max-
imal window of adjacent intervals � 100, maximum distance
between any SNP pair � 500 kb, segment size � 500 markers
with a 25-marker overlap in adjacent segments, and overlap

Abbreviations: LD, linkage disequilibrium; LDU, linkage disequilibrium unit; w, morgans;
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distance is averaged). These defaults give rapid construction of
a good LD map, with the flanking intervals contributing effi-
ciently to each interval estimate.

The predicted value of association � between two SNPs at a
distance �di kb is � � (1 � L)Me���idi � L, where di is the kb
length of the ith included interval between adjacent SNPs and
��idi is the corresponding LDU distance (4). On certain as-
sumptions, ��idi has expectation wt (8). However, w and t are not
used when constructing the LD map. The model is fitted from
the composite likelihood exp[��K� (�̂ � �)2�2], where �̂ is an
estimate with prediction � and the summation is over n pairs of
SNPs used for LD analysis within a given window containing r
SNPs. The asymptote L was predicted for each segment as the
weighted mean deviation for a normal distribution (4).

Statistical Analysis of LD Maps. LD maps were analyzed by chro-
mosome arms between the first and last physical location shared
by the linkage and LD map, omitting heterochromatic, centro-
meric, and pseudoautosomal regions. This procedure excludes
3,709 SNPs distal to the linkage map, comprising 48.1 Mb of the
LD map span and leaving 489,699 SNPs covering 2,790 Mb to be
analyzed. Correlations were examined to suggest models for
stepwise linear regression. Inferences from chromosome arms
were confirmed by partitioning each physical map into deciles.
Assuming that the variance of LDU is proportional to w, we
calculated effective bottleneck time in generations (t) and its
variance (Vt). Weighting each of s arms or deciles by length on
the linkage map in w, with length LDU on the LD map, these
estimates are

t � � w�LDU�w	��w � �LDU��w [1]

Vt �

�w�LDU�w	2 � � �w�LDU�w	� 2

��w

�w�s � 1	�s

�

� �LDU2�w	 � � �LDU� 2

��w

�w�s � 1	�s
. [2]

For both arms and deciles, the smallest values of Vt were
obtained when using the most recent linkage map (1), compared
with earlier linkage maps constructed from deCODE data by
using a multipoint approach (16) and a composite likelihood
method (17). We confirmed this choice by verifying that it gave
the smallest reduction in error variance when independent
parameters were introduced with LDU�w as a dependent vari-
able that is weighted by w. The independent variables for all
maps were h�w, Mb�w, m�w, and their squares, where h and m
are counts of holes and markers, respectively. We verified that
forward and backward stepwise regression gave the same model.
When linear and quadratic terms were both significant for a
particular variable, we accepted an exponential function if it gave
a better fit.

Results
Recombination Dominates Patterns of LD. Regressing LDU on w
through the origin and weighting by w gives the same slope t �
�LDU��w � 1,435 for the 41 chromosome arms and their 410
deciles. This result is the ratio of their capabilities to resolve
causal from predictive markers in association mapping. On
simple assumptions, it is also the number of generations over
which recombination has accumulated in the LD map during a
succession of bottlenecks in population size. Deviations from
this regression account for only 3.2% of the variance of LDU�w
for arms and 7.6% for deciles, including random errors in both

LDU and w and significant effects of other variables (Fig. 1).
Assuming a maximum of 25 years per generation, the effective
bottleneck time is no more than 25t � 35,875 years for this
population, diminished if generation time were reduced. This
finding is less than half the time since the out-of-Africa bottle-
neck (�100,000 years), reflecting subsequent population bottle-
necks and justifying the term effective bottleneck time as an
analogue of effective population size. Recovery of diversity after
a bottleneck can be rapid if determined by migration into a local
population but is extremely slow if dominated by mutation within
a species (18).

Unexpected Variation in Estimates of Effective Bottleneck Time.
Although recombination accounts for agreement with the Ma-
lecot prediction of uniform t, deviations may be significant. We
therefore examine a range of variables, including LDU, w,
markers (m), megabases (Mb), and holes (h), for deciles and
performed stepwise regression with LDU�w as the dependent
variable weighted by w. Chromosome arm size (Mb�w), marker
density (m�w), and hole density (h�w) are all significant pre-
dictors and were next studied separately.

Chiasma Interference. The first analysis examined the relationship
between t as LDU�w and arm length as Mb�w. Computer
programs in common use for constructing linkage maps assume
no chiasma interference for the computation of multilocus
likelihoods and may then convert the resulting map to approx-
imate conformity with the Kosambi function, which is not
multipoint feasible. Studies of chiasma interference in humans
have shown that it exists at greater levels than the Kosambi
function provides and appears to vary among chromosomes
(19–21). The estimate of t is significantly lower for smaller
autosomes (Fig. 2), supporting evidence that chiasma interfer-
ence becomes more intense with decreasing chromosome size, as
in the mouse (21).

Natural Selection. The X chromosome is exceptional in having
unusually low LDU�w (high LD), despite correcting for the
absence of recombination in males and is therefore excluded
from the weighted exponential fit. This finding is consistent with
more rapid selection against deleterious mutations when the X
is monosomic in males, and to a lesser extent, under random
inactivation (Lyonization) in females (22–23). The smaller ef-
fective population size Ne for the X chromosome than for
autosomes is not a factor, because Ne affects the M parameter
of the Malecot equation but not the LDU length ��idi (15).

Fig. 1. The relationship in the human genome between LDU and linkage in
w in chromosome arms (red) and deciles (blue).
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Incomplete Data. Some values of �idi are indeterminate and are
assigned a maximum value of 3 LDU, which may become as little
as 2.5 in subsequent iterations. These holes reflect segments with
elevated recombination and�or insufficient SNP density in steps
where holes occur. This uncertainty will not be resolved until the
density of SNPs within holes increases, which would also increase
the power of association mapping. Here we take �idi � 2.5 as
defining a hole. There is a significant relationship between
density of holes (h�w) and markers (m�w). Fig. 3 suggests that
the number of holes will decline with progress of the HapMap
Project and would decline more rapidly if SNP selection focused
on the 3,144 holes in the LD map or if holes were defined on a
cosmopolitan map that averages data for two or more popula-
tions (7). However, the factors that determine holes are complex,
dominated by recombination but also including SNP distribu-
tion, kb width of holes, the criteria to declare a hole, and errors
in estimation of �i. The number of holes in future databases
cannot be estimated reliably but is likely to decrease to a nonzero
limit as LD maps evolve.

High Resolution Sex-Specific Linkage Maps. We see that both linkage
and LDU maps are more complex than their simple models, despite
nearly a century of development for the former and nearly three
years for the latter. Nevertheless, the low resolution of the sex-
specific linkage maps can be greatly increased by interpolation from
the LD map. To motivate this increase, we examined LDU�Mb and

cM�Mb (cM, centimorgans) in 2-Mb sliding windows for chromo-
some 19 (Fig. 4) comparing the high-resolution LD map with the
low-resolution linkage map. At this resolution, blocks and steps in
the LD map are not visible, but major peaks and troughs in
recombination rate (cM�Mb) and strength of association (LDU�
Mb) are apparent and show high concordance between LD and
linkage maps. This agreement remains but to a lesser extent as
window size is reduced. Such graphs illustrate variation within
chromosomes and the degree of sharing between maps at arbitrary
resolution but do not provide either an LD map or linkage map. The
q arm was previously examined in a similar way by a coalescent
method, with less detail and conspicuous distortion near the
centromere (24).

The sex of ancestors in whom recombination took place is
unknown for LD maps, but this fact does not imply that LD maps
cannot be used to create sex-specific linkage maps at high
resolution. All that is required is to conserve framework loci
from the appropriate linkage map, interpolating locations from
the LD map between adjacent framework loci. Because the same
physical map was used for linkage and LD files, all linkage
markers not assigned to the same base pair in the LD file were
interpolated from the physical map and used as framework loci
if the distance to the preceding framework locus on the LD map
was zero (i.e., in the same block) or if the distance in the linkage
map was nonzero (i.e., recombination had been detected and,
therefore, not in the same block). In this way, the sex-specific
linkage framework was maintained during interpolation from
the high-resolution LD map. Fig. 5 illustrates the profound sex
differences in recombination, with males accounting for most
crossovers near the telomeres and females responsible for most
recombination near the centromere. The ratio cM�Mb is pro-
portional to the Malecot parameter � � ��idi��di, the rate of
change of the LDU map with respect to the physical map. The
LDU length ��idi is much smoother and increases monotonically
(Fig. 6), but it identifies the same peaks. Coalescent methods
conceal these differences by interpolating between the pair of
most distant markers shared between the sex-averaged linkage
map and the coalescent construct, which is neither a linkage map
nor an LD map (24). Applied to LD for a particular chromosome
in different populations, coalescence adjusts all of them to the
sex-averaged linkage map and therefore to the same length
determined by misrepresentation of interference, leaving only
selected sequences as a memento of LD differences.

Fig. 2. A graph showing variation among chromosome arms for the ratio of
the LD map in LDU�w to the physical map in Mb�w.

Fig. 3. The declining density of holes with marker density among chromo-
some arms.

Fig. 4. A graph of chromosome 19 for LDU�Mb (blue) and centimorgans
(cM)�Mb (red) against the physical scale in Mb.
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Discussion
Progress in human genomics has been so rapid that terminology
has not kept up. Cloning is no longer necessary to localize a gene,
and so the term positional cloning is currently being replaced by
association mapping. PubMed lists many papers on linkage
disequilibrium mapping, meaning that some aspect of LD is
being used. We argue that an LD map should not refer to the
annotation of genomic sequence with LD blocks and other
features, but most usefully defines a map with additive distances
that describes the pattern of LD. It is not sufficient to construct
a high-resolution recombination map, because association map-
ping requires characterization of LD patterns that reflect dura-
tion together with the effects of drift, selection, and mutation.
An LD map provides a tool for localizing genetic effects that
takes the same role for association mapping at high resolution
that the linkage map provides for low-resolution mapping.
However, an LD map is not merely a scaled linkage map, but it
is a logically different entity with its own story to tell of
recombination, selection, population history, and gene
expression.

In contrast, the linkage map is uniquely able to identify and
use sex-specific recombination patterns. Although the prop-
erties of linkage and LD maps are different, their relation is,
at present, one-sided. Because of its much greater resolution,
the LD map can be usefully interpolated into nonzero intervals

of sex-specific linkage maps. On the contrary, current linkage
maps have nothing to contribute to LD maps, which have no
chiasma interference because multiple recombination within
small regions takes place in different generations, giving a
composite likelihood that provides a benchmark for associa-
tion mapping (5, 6). The best sex-averaged linkage map should
be most nearly proportional to an LD map, and conversely,
without trying to impose one entity on the other. Evidence on
selection and population history is fully retained, with no
incentive to incorporate information from a linkage map at a
much lower resolution. Linkage and LD are separate but
complementary, with their different evidence as uncon-
founded, as is consistent with the goal of enhancing resolution
of the linkage map without degrading the LD map. It remains
to be determined whether one linkage map will suffice for
different populations and whether a single composite LD map
will be efficient for association mapping in samples with
different Malecot parameters (7).

Mathematical geneticists frequently warn about problems
absent from mutation models but central to coalescent theory
of recombination. ‘‘The full likelihood model will be very
difficult to specify without unrealistically stringent assump-
tions about population history’’ (25). ‘‘The lineages we follow
never recombine with each other (the probability of such an
event is vanishingly small). They always recombine with the
(infinitely many) nonancestral chromosomes’’ to generate a
tree that bifurcates with no junctions (26). We may agree that
such a model is only ‘‘slightly nonintuitive’’ if applied to
speciation over many millions of years, leaving few surviving
haplotypes. However, the assumption cannot be so easily
swallowed that each lineage always traces in a much shorter
time to a single ancestral haplotype within a restricted popu-
lation of a single species that lacks an alternative population
to provide ‘‘infinitely many nonancestral chromosomes.’’ The
assumption that each lineage always traces in estimable time to
a single ancestral haplotype (‘‘most recent common ancestor’’)
that can be reliably inferred has other f laws: the rarest allele
for each polymorphism in a haploset has a finite probability of
being the oldest one, and so the probability that m polymor-
phisms all trace to a single ancestral haplotype tends to zero
as m increases, and the most recent common ancestor and its
associated time vary greatly along a chromosome (27).

Inevitably these theoretical arguments have practical corol-
laries. In the Malecot model, the effective size is the harmonic
mean over generations and affects the M parameter but not
LDU, coalescent time is irrelevant, bottleneck time is estimable,
a founder haplotype is not inferred, the LD map estimate is
direct, degrees of freedom are specified, neighboring intervals
are not smoothed for either linkage or LD, and the population
is not assumed to be at equilibrium. In contrast, a coalescent
model assumes constant effective size N with proportional time,
does not recognize bottlenecks, assumes a unique founder
genotype, cannot directly estimate LD map length, has unspec-
ified degrees of freedom, arbitrarily smoothes adjacent intervals,
and assumes equilibrium. Despite their logical differences, the
two coalescent maps currently available can be scaled to fairly
good agreement with LD maps of the same small regions (24,
28). A definitive comparison cannot be made until the coalescent
model is applied to the whole genome. Association mapping
poses a greater problem, because coalescence assigns the most
recent common ancestor to a common haplotype composed of
markers with high minor allele frequencies (MAF), excluding
markers with a smaller MAF that may be predictive or causal for
association in an LD map. Experience with the two approaches
will determine the most powerful (8), but coalescent models are
heavily handicapped.

Competition between LDU maps and arbitrarily scaled sub-
stitutes is part of a larger development of analytic genomics that

Fig. 5. A graph of chromosome 19 for centimorgans (cM)�Mb in males (blue)
and females (red) against the physical scale in Mb.

Fig. 6. A graph of chromosome 19 for centimorgans (cM) in males (blue) and
females (red) against the physical map in Mb.
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will enrich the colored diagrams that conventionally represent
genomes (29) by location databases (http:��cedar.genetics.so-
ton.ac.uk�public�html) in which each point on the physical map
is associated with a vector of locations on other maps including,
but not restricted to, LDU in multiple populations, sex-specific
linkage maps, chromosome bands, and isochores. Only such
location databases can provide the composite likelihoods on
which efficient tests of significance and support intervals are
based for association mapping by linkage and LD and for

identification of sequences that are recombinogenic or subject to
regional selection.
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