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Computational studies of proteins have significantly improved our
understanding of protein folding. These studies are normally
carried out by using chains in isolation. However, in many systems
of practical interest, proteins fold in the presence of other mole-
cules. To obtain insight into folding in such situations, we compare
the thermodynamics of folding for a Miyazawa–Jernigan model
64-mer in isolation to results obtained in the presence of additional
chains. The melting temperature falls as the chain concentration
increases. In multichain systems, free-energy landscapes for fold-
ing show an increased preference for misfolded states. Misfolding
is accompanied by an increase in interprotein interactions; how-
ever, near the folding temperature, the transition from folded
chains to misfolded and associated chains is entropically driven. A
majority of the most probable interprotein contacts are also native
contacts, suggesting that native topology plays a role in early
stages of aggregation.

computer simulation � protein aggregation � lattice model

Lattice-model proteins have played a key role in developing
our understanding of protein folding. These model proteins

contain enough detail to capture the essential physics of the
folding process, yet are amenable to rigorous calculation of
free-energy landscapes used to describe the folding pathway.
Such calculations have provided a conceptual solution to the
Levinthal Paradox, which ponders the ability of a protein to
navigate a vast amount of conformational space to reach its
native state on time scales of seconds or less (1–3). The funnel-
like nature of the free-energy landscapes, first calculated from
lattice models, shows that proteins only need to sample a small
fraction of conformations to reach the native state. The ener-
getic bias toward the native state exists because native interac-
tions are, on average, more stable than nonnative ones. Similar
features are observed in folding landscapes generated from
experiments, validating results from model calculations (1).

Most computational studies of protein folding have examined
a single chain in isolation (4–7). However, in many systems of
practical interest, including in vivo folding, proteins fold in
crowded environments. In such situations, interactions with
other biological molecules compete with the intraprotein inter-
actions that bias a protein’s conformation toward its native state.
Some biological molecules, such as molecular chaperones, pro-
mote folding (8). However, intermolecular interactions can also
induce misfolding and aggregation (9, 10), resulting in loss of
protein function (11). Further, protein aggregates can be toxic.
Protein association has been linked to �20 human diseases,
including Alzheimer’s, Parkinson’s, and Huntington’s diseases
(12, 13).

We report simulations for systems containing one-, two-, or
four-lattice model 64-mers. This chain length is greater than that
in most model studies of multichain systems and correspondingly
provides a more realistic surface area�volume ratio than that for
smaller models (14, 15). Free-energy landscapes have been
calculated for the folding of chains in isolation and in systems
where individual chains may also form intermolecular interac-
tions. Throughout all simulations, we use a fixed protein se-
quence. We increase the number of neighbor molecules to
monitor association in addition to folding.

Methods
Protein Sequence and Potential Function. We use the conventional
on-lattice representation (Fig. 1). Protein molecules are repre-
sented as self-avoiding chains comprised of amino acid residues
(beads on the chain) interacting through a renormalized Miyazawa–
Jernigan (MJ) potential (16, 17). MJ potentials are empirically
derived: 20 different amino acids are possible. The renormalization
of the solvent–solute interactions introduced by Leonhard et al. (16)
corrects for some of the inconsistencies resulting from the approx-
imations underlying the original MJ model. Empirical energy scales
such as the present one can at best be used to capture qualitative
aspects of protein behavior (18, 19). For a detailed description of
the potential function see ref. 16. Each chain consists of 64 beads
with the following sequence: KEKSTAGRVASGVLDSVACGVL-
GDIDTLQGSPIAKLKTFYGNKFNDVEASQAHMIRWPNYTLPE
(Fig. 1). Solvent effects are included implicitly in the Hamiltonian.
Studies of different sequences suggest that our present conclusions
are qualitatively general and not limited to the chosen sequence.

Simulation Details. All simulations were of the standard Monte
Carlo form and conducted in the canonical (N,V,T) ensemble.
Boundary effects are taken into account by applying periodic
(minimum image) conditions. We use standard simulation
moves including: (i) displacements of either one of the end beads
to one of the available four neighboring sites; (ii) corner flips for
beads characterized by a right angle between the directions to
both contour neighbors; and (iii) crankshaft moves of bead pairs
located at the bottom of a U turn. We also allow forward and
backward slithering-snake reptation moves (20), as well as
translations of entire chains or groups of chains. Moves are
attempted at random with a priori probabilities as specified in
ref. 15, where further details of the (N,V,T) simulations are
available.

To alleviate problems related to local trapping on a rugged
free-energy landscape, we apply a replica exchange Monte Carlo
simulation technique (15). Systems are allowed to swap between
adjacent temperature levels with probabilities that preserve
canonical (Boltzmann) statistics within each level. Assuming an
approximate Arrhenius dependence of first passage times from
the local minimum, the chance of escape of a trapped system is
significantly improved during the time it spends at an elevated
temperature. A temperature swap was attempted after every
simulation pass. The attempted exchange of systems i and j with
energies Vi and Vj between temperature levels m and n was
accepted with the probability (21)

ps � min� 1, exp� � � 1
kBTn

�
1

kBTm
� �Vi � Vj�� � . [1]

In most calculations, the number of replicas (and temperature
levels) was six, with reduced temperature T ranging between 1.0
and 1.3 and typical swapping acceptances between 8% and 30%.
Reduced temperature T is normalized by the reference temper-
ature To such that kBTo represents the energy unit pertinent to
our system. The size of the cubic box equals 12, 14, and 16
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monomer lengths corresponding to volume fractions of �3.7,
4.7, and 6.3% in one, two-, and four-chain systems, respectively.
To alleviate finite-size effects, periodic boundary conditions are
applied in all directions.

Weighted Histogram Analysis Method (WHAM). WHAM was used to
analyze simulation data (22). WHAM minimizes the error in the
density-of-states function and facilitates the calculation of free-
energy surfaces. With the number of native contacts NNat and the

number of interprotein contacts NInter as example reaction
coordinates, the density-of-states function has the form

��V, NNat, NNat� �

	
j�1

k

Nk�V, NNat, NInter�

	
j�1

k

nj exp(�f j � � jV)

, [2]

where Nk is the number of occurrences for samples with (V, NNat,
NInter), fj � �Aj, where Aj is the free energy of simulation j, and
� is 1�kBT, k is the number of simulations, nj is the number of
samples from simulation j. The density of states can then be
used to calculate thermodynamic averages (using NNat as an
example) by

�NNat	 �

	
V,NNat,NInter

�NNat�*��V, NNat, NInter�exp� � �V�

	
V,NNat,NInter

�� V , NNat, NInter�exp� � �V�
. [3]

Apart from an undetermined constant, free-energy surfaces are
calculated by

F�NNat, NInter� � � kBT ln
P��NNat, NInter�� � Const .

[4]

where P�(NNat, NInter) is the probability of observing a system
with (NNat, NInter) at temperature T � (kB�)�1. A more complete
description of the application of the weighted histogram analysis
method (WHAM) equations is in ref. 23.

Fig. 2. Thermodynamic data for systems of one, two, or four lattice-model proteins. (Upper Left) Heat capacities for single-chain (blue), two-chain (red), and
four-chain systems (green) as functions of temperature. (Upper Right) Average number of native contacts (per chain) for single-chain (blue), two-chain (red),
and four-chain systems (green) as functions of temperature. (Lower Left) Average number of interprotein contacts (per chain) for two-chain (red) and four-chain
systems (green) as functions of temperature. (Lower Right) Average radius of gyration (per chain) for single-chain (blue), two-chain (red), and four chain systems
(green) as functions of temperature.

Fig. 1. Lowest-energy structure of the model protein.

Cellmer et al. PNAS � August 16, 2005 � vol. 102 � no. 33 � 11693

BI
O

PH
YS

IC
S



Results
Unfolding Occurs at Lower Temperatures in Multichain Systems. Fig.
2 Upper Left shows heat capacities as a function of temperature
for one-, two-, and four-chain systems. In all three cases, a single,
strong peak is observed, suggesting a single phase transition. As
the number of chains increases, the peak is shifted to lower
temperatures. For a one-chain system, the peak occurs at T �
1.155, for a two-chain system at 1.12, and for a four-chain system
at 1.05.

Further insight into the phase-transition data is obtained from
plots of the average number of native contacts (NNat, Fig. 2 Upper
Right), interprotein contacts (NInter, Fig. 2 Lower Left), and radius
of gyration (Rg, Fig. 2 Lower Right) as a function of temperature.
When multiple chains are present, thermal denaturation takes
place at lower temperatures, a result corroborated by findings
from more realistic models (24). For all three cases, the midpoint
temperature of unfolding essentially coincides with the heat-
capacity-peak temperature. These data show that the heat-
capacity peaks are associated with unfolding events. Further, for
multichain systems, there are sharp increases at the melting
temperatures in the number of interprotein contacts. Thus, the
loss of intraprotein interactions, to some extent, is compensated
by an increase in (attractive) interprotein interactions. Finally,
the Rg vs. T plot indicates that protein unfolding and association
are accompanied by chain expansion.

Free-Energy Landscapes for Folding. Fig. 3 shows free-energy land-
scapes for chains simulated in isolation (Upper Left), in the
presence of a second chain (Upper Right), and in the presence of
three other chains (Lower). Progress variables are the native
energy (per chain) and nonnative energy (per chain). Because

these two quantities do not explicitly include interchain effects,
they allow direct comparison of the landscapes. Further, our
progress variables are similar to those used in other lattice model
studies (1).

The plots were produced for systems at T � 1.05. At this
temperature, chains simulated in isolation populate the native
state �99% of the time (23). This result is ref lected in the
landscape for a single chain in isolation that exhibits a funnel-
like shape with only a small barrier to folding. When a second
chain is present, the landscape is more rugged and exhibits two
local minima with modest free-energy barriers (�kBT) that
slow progression toward the native state. However, the funnel-
like shape of the landscape is retained, and a noticeable bias
toward the native state exists. When a chain can interact with
three possible partners, the landscape is remarkably different.
There is little bias toward the native structure, as chains spend
about half the time populating misfolded states. The barrier
separating the misfolded states from the native state is small,
�1.5 kBT.

Thermodynamics of Association. Fig. 4 shows free-energy contours
versus the number of native and interprotein contacts for
two-chain (Left) and four-chain systems (Right). The data are
plotted at the phase transition temperatures (T � 1.12 for the
two-chain system, T � 1.05 for the four-chain system).

In the two-chain system, we see two minima of equal
(relative) free energy (F). The first, found in the region of Fig.
4 characterized by a large number of native contacts, corre-
sponds to a pair of native chains that interact through surface
residues (labeled A in Fig. 4 Left). The second corresponds to
nonnative chains that interact predominantly through residues
that are buried in the native state (labeled B in Fig. 4 Left).

Fig. 3. Free-energy landscapes for one-chain (Upper Left), two-chain (Upper Right), and four-chain systems (Lower). Vnative and Vnonnative are the potential
energy contributions from intraprotein native and nonnative interactions, respectively.
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Fig. 5 Left shows the probability distribution of the potential
energy for these two states. The pair of native chains populates
states with a potential energy much lower than the nonnative
aggregate, showing that association is entropically driven.
Using the average potential energy for each state, and the fact
that the free-energy difference between the two states is zero,
we estimate that the average entropy difference between the
two states is (47 � 9) kB per chain. This finding is similar to
the entropy difference (43 � 11) kB between the unfolded and
folded states at the phase-transition temperature for chains in
isolation.

Fig. 4 Right shows free-energy contours for the four-chain
system at T � 1.05. Two adjacent minima (labeled D and E in
Fig. 4 Right) exist with large numbers of native contacts; they
represent states where all four chains are native. The third
minimum (labeled F in Fig. 4 Right) exists at a region in the
diagram with a large number of interprotein contacts, but at a
much smaller number of native contacts; this minimum repre-
sents an aggregate of misfolded chains. The two minima corre-
sponding to systems of native proteins were grouped together to
generate a state of free energy equal to that of the aggregate. As
with the two-chain system, in the vicinity of the transition
temperature, aggregate states have potential energies signifi-
cantly higher than those for states corresponding to native
proteins (Fig. 5 Right). However, because of opportunities for
interprotein interactions with multiple partners, the entropy
difference (27 � 6)kB per chain is lower than that in one-chain
and two-chain systems.

Contacts Leading to Aggregation. To obtain a more complete
picture of the association process, we have investigated the
specific amino acid residues and residue contacts that contribute
most significantly to the protein–protein interaction potential.
Despite the increased entropy of the aggregated state, certain
amino acid residues do play an enhanced role in association. The
12 beads listed in Table 1, and shown within the context of the
native state in Fig. 6, are involved in interactions that (on
average) contribute 50% of the interprotein potential for ag-
gregates in two-chain and four-chain systems. Five of these beads
are buried in the native state. This finding is consistent with the
experimental observation that unfolding facilitates aggregation
(25–28).

Tables 2 and 3 list the 10 most probable interprotein contacts
found in aggregates. In both two-chain and four-chain systems,
9 of the 10 contacts are also native contacts, which indicates
domain swapping, which has been observed as a mechanism of
aggregation in numerous other systems (29–33).

Discussion
Free-energy landscapes show that the presence of multiple
chains can impede the folding process under conditions where
the native state is favored for isolated chains. In two-chain
systems, the landscape is more rugged, but the bias toward the
native state remains. When the number of chains increases to
four, the bias is removed, and individual molecules spend
equivalent times in native and misfolded conformations. In
systems of practical interest, such as in vivo folding (12) and
inclusion-body protein refolding (34), such changes in the free-

Fig. 4. Free-energy contours for multichain systems. (Left) Free-energy contours for a two-chain system at T � 1.12. (Right) Free-energy contours for a four-chain
systems at T � 1.05. NNat and NInter are the number of native and interprotein contacts per chain, respectively. The contours are in increments of 2 kBT0.

Fig. 5. Potential energy distributions (per chain) for a two-chain system at T � 1.12 (Left) and a four-chain system at T � 1.05 (Right).
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energy landscape have a deleterious effect. If proteins cannot
reach their native state, they are generally unable to carry out
their biological function. In in vivo folding, molecular chaperones
(8) are present to ensure that proteins can attain their native
state. Insight into chaperone behavior could be obtained if
chaperone sequences that return the folding landscape to its
natural form were identified.

The origins of the misfolding behavior observed in mul-
tichain simulations can be attributed to interprotein interac-
tions. Intramolecular energy is traded for intermolecular
energy, thus stabilizing misfolded states. However, in the
vicinity of the transition temperature, the loss in intraprotein
energy is not fully compensated by interprotein interactions
and the process of association is entropically driven. We are
unaware of any experimental results that confirm this finding,
and it is difficult to imagine the formation of large aggregates
such as inclusion bodies or amyloid fibrils accompanied by an
increase in protein entropy. Because our Hamiltonian does not
explicitly account for hydrogen bonds, it is possible that we
underestimate the effect of such interactions, known to be
important in the formation of both inclusion bodies and
amyloid fibrils (35, 36). Further, because our systems contain
a small number of chains, it is possible that for systems with

more than four chains a phase transition from disordered to
ordered aggregates could take place. Such behavior has been
observed for more detailed models found in ref. 24 (C. Hall,
personal communication). A decrease in the entropy gain is
indeed observed in our model upon increasing the number of
associated chains. However, experimental and computational
studies have shown that amorphous aggregates (24, 37) can act
as precursors to ordered assemblies of proteins, such as
amyloid fibrils. Because such amorphous aggregates lack the
apparent order of fibrils, it seems more feasible that their
formation is favored entropically. Thus if an increase in
protein entropy is a driving force for aggregation, it is likely
that this increase occurs during the early steps of the associ-
ation process, before the formation of a quaternary structure
that can be propagated such that ordered aggregation starts to
occur en masse.

Despite increased disorder characterizing the aggregated
state, some amino acids and amino acid contacts play a
persistent role in folding and aggregation. Most of these amino
acids are hydrophobic beads normally buried in the native
state. This finding is not surprising, because we observe an
increase in interprotein association upon protein unfolding.
Our finding is also in good agreement with experimental data
showing that proteins are particularly prone to aggregation
when destabilized, and natively buried, sticky residues become
available for residue–residue interactions (25–28). Further,
the majority of the most probable interprotein contacts are
also native contacts. Not surprisingly, these contacts occur
between pairs of residues that are strongly interacting. How-
ever, although many pairs of the same interaction energy can
be formed between chains, there is a significant bias toward
amino acid pairs that are also formed in the native state. As
shown in a previous study (11), interprotein contacts between
strings of complementary residues tend to form or rupture
simultaneously, suggesting that a mechanism akin to pattern

Table 2. Most probable interprotein contacts found in
aggregates for two-chain systems

Amino acid Amino acid Occurrences per snapshot

54M 55I 0.60
54M 57W 0.59
36L 55I 0.30
25I 36L 0.26
33I 54M 0.26
28L 55I 0.26
26D 35K 0.25
55I 62L 0.22
24D 37K 0.21
54M 63P 0.21

Table 3. Most probable interprotein contacts found in
aggregates for four-chain systems

Amino acid Amino acid Occurrences per snapshot

26D 35K 2.69
2E 37K 1.99
24D 37K 1.80
1K 24D 1.49
1K 2E 1.42
25L 36I 1.24
55I 62L 1.23
3K 26D 1.15
2E 35K 1.12
54M 55I 1.05

Table 1. Amino acids that, on average, contribute 50% of the
interprotein interaction potential for two- and
four-chain systems

Amino acid Amino acid identity Buried in lowest-energy structure

1 K No
2 E No

22 L Yes
25 I Yes
26 D No
33 I Yes
35 K No
37 K No
54 M Yes
55 I Yes

Fig. 6. Highlighted beads contribute, on average, 50% of the interprotein
interaction potential.
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recognition can operate both intramolecularly and intermo-
lecularly. Native topology therefore plays a role in determining
which amino acids play a dominant role in association.

In summary, we have extended a common approach to
studying protein folding in isolation to investigate protein folding
in the presence of multiple chains. This extension has not only

yielded insight into the folding process, but also insight into
misfolding and aggregation.

This work was supported by the National Science Foundation and the
Office for Basic Energy Sciences of the U.S. Department of Energy.
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