Abstract
During the last years, due to the availability of selective ligands, numerous investigations have been dedicated to sigma receptors. The existence of different subtypes of these receptors is now accepted; their endogenous ligand has not yet been identified, but some candidates have been proposed. Evidence suggests that one of their major roles might be to regulate the activity of the glutamatergic system via the N-methyl-D-aspartate receptor. The potential involvement of sigma receptors in psychiatry was suggested by the psychotomimetic effects of their earliest ligands and the fact that several neuroleptics have a high affinity for them. Recently, new arguments have strengthened this hypothesis: some molecules with high sigma affinity but low dopaminergic affinity display a "neuroleptic-like" pharmacological profile; post-mortem studies have shown a reduction of sigma binding sites in the brain of patients with schizophrenia; cocaine, which can induce psychotic episodes, has high affinity for sigma receptors. Hence, by modulating the glutamatergic inputs, by regulating directly the firing activity of dopaminergic neurons, or by both mechanisms, sigma receptors could be involved in the pathophysiology and/or in the treatment of schizophrenia.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aanonsen L. M., Wilcox G. L. Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J Pharmacol Exp Ther. 1987 Oct;243(1):9–19. [PubMed] [Google Scholar]
- Abbott A. 5-HT3 antagonists and ligands for dopamine D1- and autoreceptors offer new leads for antipsychotic drugs. Trends Pharmacol Sci. 1990 Feb;11(2):49–51. doi: 10.1016/0165-6147(90)90312-v. [DOI] [PubMed] [Google Scholar]
- Abreu P., Sugden D. Characterization of binding sites for [3H]-DTG, a selective sigma receptor ligand, in the sheep pineal gland. Biochem Biophys Res Commun. 1990 Sep 14;171(2):875–881. doi: 10.1016/0006-291x(90)91227-j. [DOI] [PubMed] [Google Scholar]
- Allen R. M., Young S. J. Phencyclidine-induced psychosis. Am J Psychiatry. 1978 Sep;135(9):1081–1084. doi: 10.1176/ajp.135.9.1081. [DOI] [PubMed] [Google Scholar]
- Altshuler L. L., Casanova M. F., Goldberg T. E., Kleinman J. E. The hippocampus and parahippocampus in schizophrenia, suicide, and control brains. Arch Gen Psychiatry. 1990 Nov;47(11):1029–1034. doi: 10.1001/archpsyc.1990.01810230045008. [DOI] [PubMed] [Google Scholar]
- Anis N. A., Berry S. C., Burton N. R., Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol. 1983 Jun;79(2):565–575. doi: 10.1111/j.1476-5381.1983.tb11031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aram J. A., Martin D., Tomczyk M., Zeman S., Millar J., Pohler G., Lodge D. Neocortical epileptogenesis in vitro: studies with N-methyl-D-aspartate, phencyclidine, sigma and dextromethorphan receptor ligands. J Pharmacol Exp Ther. 1989 Jan;248(1):320–328. [PubMed] [Google Scholar]
- Arees E. A., Mayer J. Monosodium glutamate-induced brain lesions: electron microscopic examination. Science. 1970 Oct 30;170(3957):549–550. doi: 10.1126/science.170.3957.549. [DOI] [PubMed] [Google Scholar]
- Asztely F., Hanse E., Wigström H., Gustafsson B. Synaptic potentiation in the hippocampal CA1 region induced by application of N-methyl-D-aspartate. Brain Res. 1991 Aug 30;558(1):153–156. doi: 10.1016/0006-8993(91)90734-d. [DOI] [PubMed] [Google Scholar]
- Barnes J. M., Barnes N. M., Barber P. C., Champaneria S., Costall B., Hornsby C. D., Ironside J. W., Naylor R. J. Pharmacological comparison of the sigma recognition site labelled by [3H]haloperidol in human and rat cerebellum. Naunyn Schmiedebergs Arch Pharmacol. 1992 Feb;345(2):197–202. doi: 10.1007/BF00165736. [DOI] [PubMed] [Google Scholar]
- Basile A. S., Paul I. A., de Costa B. Differential effects of cytochrome P-450 induction on ligand binding to sigma receptors. Eur J Pharmacol. 1992 Sep 1;227(1):95–98. doi: 10.1016/0922-4106(92)90148-o. [DOI] [PubMed] [Google Scholar]
- Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowen W. D., Hellewell S. B., McGarry K. A. Evidence for a multi-site model of the rat brain sigma receptor. Eur J Pharmacol. 1989 Apr 25;163(2-3):309–318. doi: 10.1016/0014-2999(89)90200-8. [DOI] [PubMed] [Google Scholar]
- Bowen W. D., Kirschner B. N., Newman A. H., Rice K. C. Sigma receptors negatively modulate agonist-stimulated phosphoinositide metabolism in rat brain. Eur J Pharmacol. 1988 May 10;149(3):399–400. doi: 10.1016/0014-2999(88)90678-4. [DOI] [PubMed] [Google Scholar]
- Bowen W. D., Moses E. L., Tolentino P. J., Walker J. M. Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. Eur J Pharmacol. 1990 Feb 27;177(3):111–118. doi: 10.1016/0014-2999(90)90260-d. [DOI] [PubMed] [Google Scholar]
- Brady K. T., Balster R. L., May E. L. Stereoisomers of N-allylnormetazocine: phencyclidine-like behavioral effects in squirrel monkeys and rats. Science. 1982 Jan 8;215(4529):178–180. doi: 10.1126/science.6274022. [DOI] [PubMed] [Google Scholar]
- Brent P. J. Similar behavioural effects of sigma agonists and PCP-like non-competitive NMDA antagonists in guinea-pigs. Psychopharmacology (Berl) 1991;105(3):421–427. doi: 10.1007/BF02244439. [DOI] [PubMed] [Google Scholar]
- Burt D. R., Creese I., Snyder S. H. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science. 1977 Apr 15;196(4287):326–328. doi: 10.1126/science.847477. [DOI] [PubMed] [Google Scholar]
- CARLSSON A., LINDQVIST M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. Acta Pharmacol Toxicol (Copenh) 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
- CURTIS D. R., WATKINS J. C. Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol. 1963 Apr;166:1–14. doi: 10.1113/jphysiol.1963.sp007087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURTIS D. R., WATKINS J. C. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem. 1960 Sep;6:117–141. doi: 10.1111/j.1471-4159.1960.tb13458.x. [DOI] [PubMed] [Google Scholar]
- Candura S. M., Coccini T., Manzo L., Costa L. G. Interaction of sigma-compounds with receptor-stimulated phosphoinositide metabolism in the rat brain. J Neurochem. 1990 Nov;55(5):1741–1748. doi: 10.1111/j.1471-4159.1990.tb04964.x. [DOI] [PubMed] [Google Scholar]
- Carlsson M., Carlsson A. Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull. 1990;16(3):425–432. doi: 10.1093/schbul/16.3.425. [DOI] [PubMed] [Google Scholar]
- Carter C., Rivy J. P., Scatton B. Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-D-aspartate (NMDA) receptor. Eur J Pharmacol. 1989 May 30;164(3):611–612. doi: 10.1016/0014-2999(89)90275-6. [DOI] [PubMed] [Google Scholar]
- Christine C. W., Choi D. W. Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci. 1990 Jan;10(1):108–116. doi: 10.1523/JNEUROSCI.10-01-00108.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christison G. W., Casanova M. F., Weinberger D. R., Rawlings R., Kleinman J. E. A quantitative investigation of hippocampal pyramidal cell size, shape, and variability of orientation in schizophrenia. Arch Gen Psychiatry. 1989 Nov;46(11):1027–1032. doi: 10.1001/archpsyc.1989.01810110069010. [DOI] [PubMed] [Google Scholar]
- Clark D., Engberg G., Pileblad E., Svensson T. H., Carlsson A., Freeman A. S., Bunney B. S. An electrophysiological analysis of the actions of the 3-PPP enantiomers on the nigrostriatal dopamine system. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jun;329(4):344–354. doi: 10.1007/BF00496366. [DOI] [PubMed] [Google Scholar]
- Collingridge G. L., Kehl S. J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983 Jan;334:33–46. doi: 10.1113/jphysiol.1983.sp014478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collingridge G. L., Kehl S. J., McLennan H. The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. J Physiol. 1983 Jan;334:19–31. doi: 10.1113/jphysiol.1983.sp014477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor M. A., Chavkin C. Focal stimulation of specific pathways in the rat hippocampus causes a reduction in radioligand binding to the haloperidol-sensitive sigma receptor. Exp Brain Res. 1991;85(3):528–536. doi: 10.1007/BF00231736. [DOI] [PubMed] [Google Scholar]
- Connor M. A., Chavkin C. Ionic zinc may function as an endogenous ligand for the haloperidol-sensitive sigma 2 receptor in rat brain. Mol Pharmacol. 1992 Sep;42(3):471–479. [PubMed] [Google Scholar]
- Contreras P. C., Bremer M. E., Gray N. M. Ifenprodil and SL 82.0715 potently inhibit binding of [3H](+)-3-PPP to sigma binding sites in rat brain. Neurosci Lett. 1990 Aug 14;116(1-2):190–193. doi: 10.1016/0304-3940(90)90408-2. [DOI] [PubMed] [Google Scholar]
- Contreras P. C., Bremer M. E., Rao T. S. GBR-12909 and fluspirilene potently inhibited binding of [3H] (+)3-PPP to sigma receptors in rat brain. Life Sci. 1990;47(22):PL133–PL137. doi: 10.1016/0024-3205(90)90446-x. [DOI] [PubMed] [Google Scholar]
- Contreras P. C., DiMaggio D. A., O'Donohue T. L. An endogenous ligand for the sigma opioid binding site. Synapse. 1987;1(1):57–61. doi: 10.1002/syn.890010108. [DOI] [PubMed] [Google Scholar]
- Contreras P. C., Quirion R., Gehlert D. R., Contreras M. L., O'Donohue T. L. Autoradiographic distribution of non-dopaminergic binding sites labeled by [3H]haloperidol in rat brain. Neurosci Lett. 1987 Mar 31;75(2):133–140. doi: 10.1016/0304-3940(87)90286-2. [DOI] [PubMed] [Google Scholar]
- Crawford M., Roberts P. J. 1-Hydroxy-3-aminopyrrolid-2-one (HA-966) and kynurenate antagonize N-methyl-D-aspartate induced enhancement of [3H]dopamine release from rat striatal slices. Biochem Pharmacol. 1989 Dec 1;38(23):4165–4168. doi: 10.1016/0006-2952(89)90510-8. [DOI] [PubMed] [Google Scholar]
- Dana C., Benavides J., Schoemaker H., Scatton B. Pharmacological characterisation and autoradiographic distribution of polyamine-sensitive [3H]ifenprodil binding sites in the rat brain. Neurosci Lett. 1991 Apr 15;125(1):45–48. doi: 10.1016/0304-3940(91)90127-f. [DOI] [PubMed] [Google Scholar]
- Danger J. M., Tonon M. C., Jenks B. G., Saint-Pierre S., Martel J. C., Fasolo A., Breton B., Quirion R., Pelletier G., Vaudry H. Neuropeptide Y: localization in the central nervous system and neuroendocrine functions. Fundam Clin Pharmacol. 1990;4(3):307–340. doi: 10.1111/j.1472-8206.1990.tb00497.x. [DOI] [PubMed] [Google Scholar]
- DeHaven-Hudkins D. L., Hudkins R. L. Binding of dexetimide and levetimide to [3H](+)pentazocine- and [3H]1,3-di(2-tolyl)guanidine-defined sigma recognition sites. Life Sci. 1991;49(18):PL135–PL139. doi: 10.1016/0024-3205(91)90203-n. [DOI] [PubMed] [Google Scholar]
- Deakin J. F., Slater P., Simpson M. D., Gilchrist A. C., Skan W. J., Royston M. C., Reynolds G. P., Cross A. J. Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem. 1989 Jun;52(6):1781–1786. doi: 10.1111/j.1471-4159.1989.tb07257.x. [DOI] [PubMed] [Google Scholar]
- Den Boer J. A., Ravelli D. P., Huisman J., Ohrvik J., Verhoeven W. M., Westenberg H. G. Double blind comparative study of remoxipride and haloperidol in acute schizophrenic patients. Psychopharmacology (Berl) 1990;102(1):76–84. doi: 10.1007/BF02245748. [DOI] [PubMed] [Google Scholar]
- Deutch A. Y., Moghaddam B., Innis R. B., Krystal J. H., Aghajanian G. K., Bunney B. S., Charney D. S. Mechanisms of action of atypical antipsychotic drugs. Implications for novel therapeutic strategies for schizophrenia. Schizophr Res. 1991 Mar-Apr;4(2):121–156. doi: 10.1016/0920-9964(91)90030-u. [DOI] [PubMed] [Google Scholar]
- Deutsch S. I., Mastropaolo J., Schwartz B. L., Rosse R. B., Morihisa J. M. A "glutamatergic hypothesis" of schizophrenia. Rationale for pharmacotherapy with glycine. Clin Neuropharmacol. 1989 Feb;12(1):1–13. [PubMed] [Google Scholar]
- Deutsch S. I., Weizman A., Goldman M. E., Morihisa J. M. The sigma receptor: a novel site implicated in psychosis and antipsychotic drug efficacy. Clin Neuropharmacol. 1988 Apr;11(2):105–119. [PubMed] [Google Scholar]
- Dumont Y., Martel J. C., Fournier A., St-Pierre S., Quirion R. Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues. Prog Neurobiol. 1992;38(2):125–167. doi: 10.1016/0301-0082(92)90038-g. [DOI] [PubMed] [Google Scholar]
- Engberg G., Wikström H. Sigma-receptors: implication for the control of neuronal activity of nigral dopamine-containing neurons. Eur J Pharmacol. 1991 Aug 29;201(2-3):199–202. doi: 10.1016/0014-2999(91)90345-q. [DOI] [PubMed] [Google Scholar]
- Etienne P., Baudry M. Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmission, brain aging and schizophrenia: a unifying hypothesis. Neurobiol Aging. 1987 Jul-Aug;8(4):362–366. doi: 10.1016/0197-4580(87)90081-9. [DOI] [PubMed] [Google Scholar]
- Farde L., Wiesel F. A., Nordström A. L., Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl) 1989;99 (Suppl):S28–S31. doi: 10.1007/BF00442555. [DOI] [PubMed] [Google Scholar]
- Ferris R. M., Tang F. L., Chang K. J., Russell A. Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life Sci. 1986 Jun 23;38(25):2329–2337. doi: 10.1016/0024-3205(86)90640-5. [DOI] [PubMed] [Google Scholar]
- Fink K., Göthert M., Molderings G., Schlicker E. N-methyl-D-aspartate (NMDA) receptor-mediated stimulation of noradrenaline release, but not release of other neurotransmitters, in the rat brain cortex: receptor location, characterization and desensitization. Naunyn Schmiedebergs Arch Pharmacol. 1989 May;339(5):514–521. doi: 10.1007/BF00167254. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Fagg G. E. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. 1984 May;319(2):103–164. doi: 10.1016/0165-0173(84)90020-1. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Mena E. E., Monaghan D. T., Cotman C. W. Synaptic localization of kainic acid binding sites. Nature. 1981 Jan 1;289(5793):73–75. doi: 10.1038/289073a0. [DOI] [PubMed] [Google Scholar]
- Freeman A. S., Bunney B. S. The effects of phencyclidine and N-allylnormetazocine on midbrain dopamine neuronal activity. Eur J Pharmacol. 1984 Sep 17;104(3-4):287–293. doi: 10.1016/0014-2999(84)90404-7. [DOI] [PubMed] [Google Scholar]
- French E. D., Ceci A. Non-competitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neurosci Lett. 1990 Nov 13;119(2):159–162. doi: 10.1016/0304-3940(90)90823-r. [DOI] [PubMed] [Google Scholar]
- Fujii K., Jaffe H., Bishop Y., Arnold E., Mackintosh D., Epstein S. S. Structure-activity relations for methylenedioxyphenyl and related compounds on hepatic microsomal enzyme function, as measured by prolongation of hexobarbital narcosis and zoxazolamine paralysis in mice. Toxicol Appl Pharmacol. 1970 Mar;16(2):482–494. doi: 10.1016/0041-008x(70)90022-0. [DOI] [PubMed] [Google Scholar]
- Goldstein S. R., Matsumoto R. R., Thompson T. L., Patrick R. L., Bowen W. D., Walker J. M. Motor effects of two sigma ligands mediated by nigrostriatal dopamine neurons. Synapse. 1989;4(3):254–258. doi: 10.1002/syn.890040311. [DOI] [PubMed] [Google Scholar]
- Graybiel A. M., Besson M. J., Weber E. Neuroleptic-sensitive binding sites in the nigrostriatal system: evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat. J Neurosci. 1989 Jan;9(1):326–338. doi: 10.1523/JNEUROSCI.09-01-00326.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gundlach A. L., Largent B. L., Snyder S. H. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci. 1986 Jun;6(6):1757–1770. doi: 10.1523/JNEUROSCI.06-06-01757.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Göthert M., Fink K. Inhibition of N-methyl-D-aspartate (NMDA)- and L-glutamate-induced noradrenaline and acetylcholine release in the rat brain by ethanol. Naunyn Schmiedebergs Arch Pharmacol. 1989 Nov;340(5):516–521. doi: 10.1007/BF00260606. [DOI] [PubMed] [Google Scholar]
- Haertzen C. A. Subjective effects of narcotic antagonists cyclazocine and nalorphine on the Addiction Research Center Inventory (ARCI). Psychopharmacologia. 1970;18(4):366–377. doi: 10.1007/BF00402763. [DOI] [PubMed] [Google Scholar]
- Heckers S., Heinsen H., Heinsen Y., Beckmann H. Morphometry of the parahippocampal gyrus in schizophrenics and controls. Some anatomical considerations. J Neural Transm Gen Sect. 1990;80(2):151–155. doi: 10.1007/BF01257080. [DOI] [PubMed] [Google Scholar]
- Hoffman D. W. Neuroleptic drugs and the sigma receptor. Am J Psychiatry. 1990 Aug;147(8):1093–1094. doi: 10.1176/ajp.147.8.1093. [DOI] [PubMed] [Google Scholar]
- Holtzman S. G. Opioid- and phencyclidine-like discriminative effects of ditolylguanidine, a selective sigma ligand. J Pharmacol Exp Ther. 1989 Mar;248(3):1054–1062. [PubMed] [Google Scholar]
- Hudkins R. L., DeHaven-Hudkins D. L. M1 muscarinic antagonists interact with sigma recognition sites. Life Sci. 1991;49(17):1229–1235. doi: 10.1016/0024-3205(91)90135-x. [DOI] [PubMed] [Google Scholar]
- Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itzhak Y., Alerhand S. Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice. FASEB J. 1989 May;3(7):1868–1872. doi: 10.1096/fasebj.3.7.2541039. [DOI] [PubMed] [Google Scholar]
- Itzhak Y., Kassim C. O. Clorgyline displays high affinity for sigma binding sites in C57BL/6 mouse brain. Eur J Pharmacol. 1990 Jan 25;176(1):107–108. doi: 10.1016/0014-2999(90)90139-w. [DOI] [PubMed] [Google Scholar]
- Itzhak Y. Multiple affinity binding states of the sigma receptor: effect of GTP-binding protein-modifying agents. Mol Pharmacol. 1989 Oct;36(4):512–517. [PubMed] [Google Scholar]
- Itzhak Y., Ruhland M., Krähling H. Binding of umespirone to the sigma receptor: evidence for multiple affinity states. Neuropharmacology. 1990 Feb;29(2):181–184. doi: 10.1016/0028-3908(90)90058-y. [DOI] [PubMed] [Google Scholar]
- Itzhak Y., Stein I. Sigma binding sites in the brain; an emerging concept for multiple sites and their relevance for psychiatric disorders. Life Sci. 1990;47(13):1073–1081. doi: 10.1016/0024-3205(90)90165-n. [DOI] [PubMed] [Google Scholar]
- Itzhak Y. [3H]PCP-3-OH and (+)[3H]SKF 10047 binding sites in rat brain membranes: evidence of multiplicity. Eur J Pharmacol. 1987 Apr 14;136(2):231–234. doi: 10.1016/0014-2999(87)90715-1. [DOI] [PubMed] [Google Scholar]
- Iwamoto E. T. Evidence for a model of activation of central sigma systems. Life Sci. 1989;44(21):1547–1554. doi: 10.1016/0024-3205(89)90448-7. [DOI] [PubMed] [Google Scholar]
- Iyengar S., Dilworth V. M., Mick S. J., Contreras P. C., Monahan J. B., Rao T. S., Wood P. L. Sigma receptors modulate both A9 and A10 dopaminergic neurons in the rat brain: functional interaction with NMDA receptors. Brain Res. 1990 Aug 6;524(2):322–326. doi: 10.1016/0006-8993(90)90709-k. [DOI] [PubMed] [Google Scholar]
- Iyengar S., Mick S., Dilworth V., Michel J., Rao T. S., Farah J. M., Wood P. L. Sigma receptors modulate the hypothalamic-pituitary-adrenal (HPA) axis centrally: evidence for a functional interaction with NMDA receptors, in vivo. Neuropharmacology. 1990 Mar;29(3):299–303. doi: 10.1016/0028-3908(90)90017-l. [DOI] [PubMed] [Google Scholar]
- Iyengar S., Wood P. L., Mick S. J., Dilworth V. M., Gray N. M., Farah J. M., Rao T. S., Contreras P. C. (+) 3-[3-hydroxyphenyl-N-(1-propyl) piperidine] selectively differentiates effects of sigma ligands on neurochemical pathways modulated by sigma receptors: evidence for subtypes, in vivo. Neuropharmacology. 1991 Aug;30(8):915–922. doi: 10.1016/0028-3908(91)90127-w. [DOI] [PubMed] [Google Scholar]
- Jansen K. L., Faull R. L., Dragunow M., Leslie R. A. Autoradiographic distribution of sigma receptors in human neocortex, hippocampus, basal ganglia, cerebellum, pineal and pituitary glands. Brain Res. 1991 Sep 13;559(1):172–177. doi: 10.1016/0006-8993(91)90303-d. [DOI] [PubMed] [Google Scholar]
- Jarvis M. F., Murphy D. E., Williams M. Quantitative autoradiographic localization of NMDA receptors in rat brain using [3H]CPP: comparison with [3H]TCP binding sites. Eur J Pharmacol. 1987 Sep 2;141(1):149–152. doi: 10.1016/0014-2999(87)90423-7. [DOI] [PubMed] [Google Scholar]
- Jeste D. V., Lohr J. B. Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry. 1989 Nov;46(11):1019–1024. doi: 10.1001/archpsyc.1989.01810110061009. [DOI] [PubMed] [Google Scholar]
- Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
- Jones K. W., Bauerle L. M., DeNoble V. J. Differential effects of sigma and phencyclidine receptor ligands on learning. Eur J Pharmacol. 1990 Apr 10;179(1-2):97–102. doi: 10.1016/0014-2999(90)90406-v. [DOI] [PubMed] [Google Scholar]
- Jones S. M., Snell L. D., Johnson K. M. Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal [3H]norepinephrine release. J Pharmacol Exp Ther. 1987 Feb;240(2):492–497. [PubMed] [Google Scholar]
- Junien J. L., Roman F. J., Brunelle G., Pascaud X. JO1784, a novel sigma ligand, potentiates [3H]acetylcholine release from rat hippocampal slices. Eur J Pharmacol. 1991 Aug 6;200(2-3):343–345. doi: 10.1016/0014-2999(91)90593-f. [DOI] [PubMed] [Google Scholar]
- Karbon E. W., Enna S. J. Pharmacological characterization of sigma binding sites in guinea pig brain membranes. Adv Exp Med Biol. 1991;287:51–59. doi: 10.1007/978-1-4684-5907-4_5. [DOI] [PubMed] [Google Scholar]
- Karbon E. W., Naper K., Pontecorvo M. J. [3H]DTG and [3H](+)-3-PPP label pharmacologically distinct sigma binding sites in guinea pig brain membranes. Eur J Pharmacol. 1991 Jan 25;193(1):21–27. doi: 10.1016/0014-2999(91)90195-v. [DOI] [PubMed] [Google Scholar]
- Khazan N., Young G. A., El-Fakany E. E., Hong O., Calligaro D. Sigma receptors mediated the psychotomimetic effects of N-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties. Neuropharmacology. 1984 Aug;23(8):983–987. doi: 10.1016/0028-3908(84)90015-7. [DOI] [PubMed] [Google Scholar]
- Kim J. S., Kornhuber H. H., Schmid-Burgk W., Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980 Dec;20(3):379–382. doi: 10.1016/0304-3940(80)90178-0. [DOI] [PubMed] [Google Scholar]
- Kim M., Bickford P. C. Electrophysiological effects of phencyclidine and the sigma agonist ditolylguanidine in the cerebellum of the rat. Neuropharmacology. 1992 Jan;31(1):77–83. doi: 10.1016/0028-3908(92)90164-k. [DOI] [PubMed] [Google Scholar]
- King D. J., Blomqvist M., Cooper S. J., Doherty M. M., Mitchell M. J., Montgomery R. C. A placebo controlled trial of remoxipride in the prevention of relapse in chronic schizophrenia. Psychopharmacology (Berl) 1992;107(2-3):175–179. doi: 10.1007/BF02245134. [DOI] [PubMed] [Google Scholar]
- Kizu A., Yoshida Y., Miyagishi T. Rat cortical sigma receptors differentially regulated by pentazocine and haloperidol. J Neural Transm Gen Sect. 1991;83(1-2):149–153. doi: 10.1007/BF01244461. [DOI] [PubMed] [Google Scholar]
- Klein M., Canoll P. D., Musacchio J. M. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of [3H]dextromethorphan and sigma ligands to guinea pig brain. Life Sci. 1991;48(6):543–550. doi: 10.1016/0024-3205(91)90469-r. [DOI] [PubMed] [Google Scholar]
- Klein M., Musacchio J. M. High affinity dextromethorphan binding sites in guinea pig brain. Effect of sigma ligands and other agents. J Pharmacol Exp Ther. 1989 Oct;251(1):207–215. [PubMed] [Google Scholar]
- Knight A. R., Gillard J., Wong E. H., Middlemiss D. N. The human sigma site, which resembles that in NCB20 cells, may correspond to a low-affinity site in guinea pig brain. Neurosci Lett. 1991 Oct 14;131(2):233–236. doi: 10.1016/0304-3940(91)90621-y. [DOI] [PubMed] [Google Scholar]
- Kornhuber J., Fischer E. G. Glutamic acid diethyl ester induces catalepsy in rats. A new model for schizophrenia? Neurosci Lett. 1982 Dec 31;34(3):325–329. doi: 10.1016/0304-3940(82)90196-3. [DOI] [PubMed] [Google Scholar]
- Kovelman J. A., Scheibel A. B. A neurohistological correlate of schizophrenia. Biol Psychiatry. 1984 Dec;19(12):1601–1621. [PubMed] [Google Scholar]
- LUBY E. D., COHEN B. D., ROSENBAUM G., GOTTLIEB J. S., KELLEY R. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry. 1959 Mar;81(3):363–369. doi: 10.1001/archneurpsyc.1959.02340150095011. [DOI] [PubMed] [Google Scholar]
- LaBella F. S. Cytochrome P450 enzymes: ubiquitous "receptors" for drugs. Can J Physiol Pharmacol. 1991 Aug;69(8):1129–1132. doi: 10.1139/y91-165. [DOI] [PubMed] [Google Scholar]
- Largent B. L., Gundlach A. L., Snyder S. H. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther. 1986 Aug;238(2):739–748. [PubMed] [Google Scholar]
- Largent B. L., Gundlach A. L., Snyder S. H. Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4983–4987. doi: 10.1073/pnas.81.15.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Largent B. L., Wikström H., Gundlach A. L., Snyder S. H. Structural determinants of sigma receptor affinity. Mol Pharmacol. 1987 Dec;32(6):772–784. [PubMed] [Google Scholar]
- Legendre P., Westbrook G. L. Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol Pharmacol. 1991 Aug;40(2):289–298. [PubMed] [Google Scholar]
- Lindvall O., Björklund A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl. 1974;412:1–48. [PubMed] [Google Scholar]
- Malouf A. T., Swearengen E., Chavkin C. Comparison of the actions of phencyclidine and sigma ligands on CA1 hippocampal pyramidal neurons in the rat. Neuropharmacology. 1988 Nov;27(11):1161–1170. doi: 10.1016/0028-3908(88)90012-3. [DOI] [PubMed] [Google Scholar]
- Marquis K. L., Paquette N. C., Gussio R. P., Moreton J. E. Comparative electroencephalographic and behavioral effects of phencyclidine, (+)-SKF-10,047 and MK-801 in rats. J Pharmacol Exp Ther. 1989 Dec;251(3):1104–1112. [PubMed] [Google Scholar]
- Martel J. C., St-Pierre S., Quirion R. Comparative distribution of neuropeptide Y immunoreactivity and receptor autoradiography in rat forebrain. Peptides. 1988;9 (Suppl 1):15–20. doi: 10.1016/0196-9781(88)90217-3. [DOI] [PubMed] [Google Scholar]
- Martin B. R., Katzen J. S., Woods J. A., Tripathi H. L., Harris L. S., May E. L. Stereoisomers of [3H]-N-allylnormetazocine bind to different sites in mouse brain. J Pharmacol Exp Ther. 1984 Dec;231(3):539–544. [PubMed] [Google Scholar]
- Martin D., Lodge D. Phencyclidine receptors and N-methyl-D-aspartate antagonism: electrophysiologic data correlates with known behaviours. Pharmacol Biochem Behav. 1988 Oct;31(2):279–286. doi: 10.1016/0091-3057(88)90346-2. [DOI] [PubMed] [Google Scholar]
- Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
- Mash D. C., Zabetian C. P. Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse. 1992 Nov;12(3):195–205. doi: 10.1002/syn.890120304. [DOI] [PubMed] [Google Scholar]
- Matsumoto R. R., Bowen W. D., Walker J. M. Down-regulation of sigma receptors by chronic haloperidol. Prog Clin Biol Res. 1990;328:125–128. [PubMed] [Google Scholar]
- Matsumoto R. R., Walker J. M. Inhibition of rubral neurons by a specific ligand for sigma receptors. Eur J Pharmacol. 1988 Dec 6;158(1-2):161–165. doi: 10.1016/0014-2999(88)90268-3. [DOI] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
- McCann D. J., Rabin R. A., Rens-Domiano S., Winter J. C. Phencyclidine/SKF-10,047 binding sites: evaluation of function. Pharmacol Biochem Behav. 1989 Jan;32(1):87–94. doi: 10.1016/0091-3057(89)90215-3. [DOI] [PubMed] [Google Scholar]
- McCann D. J., Su T. P. Haloperidol competitively inhibits the binding of (+)-[3H]SKF-10,047 to sigma sites. Eur J Pharmacol. 1990 May 16;180(2-3):361–364. doi: 10.1016/0014-2999(90)90322-w. [DOI] [PubMed] [Google Scholar]
- McCann D. J., Su T. P. Haloperidol-sensitive (+)[3H]SKF-10,047 binding sites (sigma sites) exhibit a unique distribution in rat brain subcellular fractions. Eur J Pharmacol. 1990 Apr 25;188(4-5):211–218. doi: 10.1016/0922-4106(90)90004-h. [DOI] [PubMed] [Google Scholar]
- McLean S., Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain. Neuroscience. 1988 Apr;25(1):259–269. doi: 10.1016/0306-4522(88)90024-3. [DOI] [PubMed] [Google Scholar]
- Meltzer H. Y., Matsubara S., Lee J. C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther. 1989 Oct;251(1):238–246. [PubMed] [Google Scholar]
- Meltzer H. Y., Matsubara S., Lee J. C. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull. 1989;25(3):390–392. [PubMed] [Google Scholar]
- Menkel M., Terry P., Pontecorvo M., Katz J. L., Witkin J. M. Selective sigma ligands block stimulant effects of cocaine. Eur J Pharmacol. 1991 Aug 29;201(2-3):251–252. doi: 10.1016/0014-2999(91)90355-t. [DOI] [PubMed] [Google Scholar]
- Mickelson M. M., Lahti R. A. 3H-SKF10047 receptor binding studies. Attempts to define the opioid sigma receptor. Neuropeptides. 1984 Dec;5(1-3):149–152. doi: 10.1016/0143-4179(84)90049-0. [DOI] [PubMed] [Google Scholar]
- Mickelson M. M., Lahti R. A. Demonstration of non-opioid sigma binding with (d)3H-SKF 10047 in guinea pig brain. Res Commun Chem Pathol Pharmacol. 1985 Feb;47(2):255–263. [PubMed] [Google Scholar]
- Monnet F. P., Blier P., Debonnel G., de Montigny C. Modulation by sigma ligands of N-methyl-D-aspartate-induced [3H]noradrenaline release in the rat hippocampus: G-protein dependency. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jul;346(1):32–39. doi: 10.1007/BF00167567. [DOI] [PubMed] [Google Scholar]
- Monnet F. P., Debonnel G., Fournier A., de Montigny C. Neuropeptide Y potentiates the N-methyl-D-aspartate response in the CA3 dorsal hippocampus. II. Involvement of a subtype of sigma receptor. J Pharmacol Exp Ther. 1992 Dec;263(3):1219–1225. [PubMed] [Google Scholar]
- Monnet F. P., Debonnel G., Junien J. L., De Montigny C. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol. 1990 Apr 25;179(3):441–445. doi: 10.1016/0014-2999(90)90186-a. [DOI] [PubMed] [Google Scholar]
- Monnet F. P., Debonnel G., de Montigny C. The cytochromes P-450 are not involved in the modulation of the N-methyl-D-aspartate response by sigma ligands in the rat CA3 dorsal hippocampus. Synapse. 1993 Jan;13(1):30–38. doi: 10.1002/syn.890130105. [DOI] [PubMed] [Google Scholar]
- Monnet F. P., Fournier A., Debonnel G., de Montigny C. Neuropeptide Y potentiates selectively the N-methyl-D-aspartate response in the rat CA3 dorsal hippocampus. I. Involvement of an atypical neuropeptide Y receptor. J Pharmacol Exp Ther. 1992 Dec;263(3):1212–1218. [PubMed] [Google Scholar]
- Musacchio J. M., Klein M., Canoll P. D. Dextromethorphan and sigma ligands: common sites but diverse effects. Life Sci. 1989;45(19):1721–1732. doi: 10.1016/0024-3205(89)90510-9. [DOI] [PubMed] [Google Scholar]
- Musacchio J. M., Klein M., Santiago L. J. Allosteric modulation of dextromethorphan binding sites. Neuropharmacology. 1987 Jul;26(7B):997–1001. doi: 10.1016/0028-3908(87)90078-5. [DOI] [PubMed] [Google Scholar]
- Musacchio J. M. The psychotomimetic effects of opiates and the sigma receptor. Neuropsychopharmacology. 1990 Jun;3(3):191–200. [PubMed] [Google Scholar]
- Neumaier J. F., Chavkin C. Calcium-dependent displacement of haloperidol-sensitive sigma receptor binding in rat hippocampal slices following tissue depolarization. Brain Res. 1989 Oct 23;500(1-2):215–222. doi: 10.1016/0006-8993(89)90316-8. [DOI] [PubMed] [Google Scholar]
- Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
- Okada F., Crow T. J., Roberts G. W. G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change. J Neural Transm Gen Sect. 1991;84(1-2):147–153. doi: 10.1007/BF01249119. [DOI] [PubMed] [Google Scholar]
- Olney J. W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969 May 9;164(3880):719–721. doi: 10.1126/science.164.3880.719. [DOI] [PubMed] [Google Scholar]
- Parker E. M., Cubeddu L. X. Evidence for autoreceptor modulation of endogenous dopamine release from rabbit caudate nucleus in vitro. J Pharmacol Exp Ther. 1985 Feb;232(2):492–500. [PubMed] [Google Scholar]
- Pascaud X., Defaux J. P., Rozé C., Junien J. L. Effect of selective sigma ligands on duodenal alkaline secretion in the rat. J Pharmacol Exp Ther. 1990 Dec;255(3):1354–1359. [PubMed] [Google Scholar]
- Piontek J. A., Wang R. Y. Acute and subchronic effects of Rimcazole (BW 234U), a potential antipsychotic drug, on A9 and A10 dopamine neurons in the rat. Life Sci. 1986 Aug 18;39(7):651–658. doi: 10.1016/0024-3205(86)90047-0. [DOI] [PubMed] [Google Scholar]
- Pontecorvo M. J., Karbon E. W., Goode S., Clissold D. B., Borosky S. A., Patch R. J., Ferkany J. W. Possible cerebroprotective and in vivo NMDA antagonist activities of sigma agents. Brain Res Bull. 1991 Mar;26(3):461–465. doi: 10.1016/0361-9230(91)90025-f. [DOI] [PubMed] [Google Scholar]
- Quirion R., Bowen W. D., Itzhak Y., Junien J. L., Musacchio J. M., Rothman R. B., Su T. P., Tam S. W., Taylor D. P. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci. 1992 Mar;13(3):85–86. doi: 10.1016/0165-6147(92)90030-a. [DOI] [PubMed] [Google Scholar]
- Quirion R., Hammer R. P., Jr, Herkenham M., Pert C. B. Phencyclidine (angel dust)/sigma "opiate" receptor: visualization by tritium-sensitive film. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5881–5885. doi: 10.1073/pnas.78.9.5881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao T. S., Cler J. A., Mick S. J., Dilworth V. M., Contreras P. C., Iyengar S., Wood P. L. Neurochemical characterization of dopaminergic effects of opipramol, a potent sigma receptor ligand, in vivo. Neuropharmacology. 1990 Dec;29(12):1191–1197. doi: 10.1016/0028-3908(90)90044-r. [DOI] [PubMed] [Google Scholar]
- Rao T. S., Cler J. A., Mick S. J., Ragan D. M., Lanthorn T. H., Contreras P. C., Iyengar S., Wood P. L. Opipramol, a potent sigma ligand, is an anti-ischemic agent: neurochemical evidence for an interaction with the N-methyl-D-aspartate receptor complex in vivo by cerebellar cGMP measurements. Neuropharmacology. 1990 Dec;29(12):1199–1204. doi: 10.1016/0028-3908(90)90045-s. [DOI] [PubMed] [Google Scholar]
- Rao T. S., Mick S. J., Cler J. A., Emmett M. R., Dilworth V. M., Contreras P. C., Gray N. M., Wood P. L., Iyengar S. Effects of sigma ligands on mouse cerebellar cyclic guanosine monophosphate (cGMP) levels in vivo: further evidence for a functional modulation of N-methyl-D-aspartate (NMDA) receptor complex-mediated events by sigma ligands. Brain Res. 1991 Oct 4;561(1):43–50. doi: 10.1016/0006-8993(91)90747-j. [DOI] [PubMed] [Google Scholar]
- Reynolds G. P., Brown J. E., Middlemiss D. N. [3H]ditolylguanidine binding to human brain sigma sites is diminished after haloperidol treatment. Eur J Pharmacol. 1991 Mar 5;194(2-3):235–236. doi: 10.1016/0014-2999(91)90110-c. [DOI] [PubMed] [Google Scholar]
- Rivière P. J., Pascaud X., Junien J. L., Porreca F. Neuropeptide Y and JO 1784, a selective sigma ligand, alter intestinal ion transport through a common, haloperidol-sensitive site. Eur J Pharmacol. 1990 Oct 23;187(3):557–559. doi: 10.1016/0014-2999(90)90388-m. [DOI] [PubMed] [Google Scholar]
- Roman F. J., Pascaud X., Duffy O., Vauche D., Martin B., Junien J. L. Neuropeptide Y and peptide YY interact with rat brain sigma and PCP binding sites. Eur J Pharmacol. 1989 Dec 19;174(2-3):301–302. doi: 10.1016/0014-2999(89)90326-9. [DOI] [PubMed] [Google Scholar]
- Roman F., Pascaud X., Chomette G., Bueno L., Junien J. L. Autoradiographic localization of sigma opioid receptors in the gastrointestinal tract of the guinea pig. Gastroenterology. 1989 Jul;97(1):76–82. doi: 10.1016/0016-5085(89)91418-2. [DOI] [PubMed] [Google Scholar]
- Sagratella S., Benedetti M., Pézzola A., Scotti de Carolis A. Behavioural and electroencephalographic effects of excitatory amino acid antagonists and sigma opiate/phencyclidine-like compounds in rats. Neuropharmacology. 1989 Jan;28(1):57–61. doi: 10.1016/0028-3908(89)90068-3. [DOI] [PubMed] [Google Scholar]
- Sanger D. J., Joly D. Effects of NMDA receptor antagonists and sigma ligands on the acquisition of conditioned fear in mice. Psychopharmacology (Berl) 1991;104(1):27–34. doi: 10.1007/BF02244550. [DOI] [PubMed] [Google Scholar]
- Schmidt A., Lebel L., Koe B. K., Seeger T., Heym J. Sertraline potently displaces (+)-[3H]3-PPP binding to sigma sites in rat brain. Eur J Pharmacol. 1989 Jun 20;165(2-3):335–336. doi: 10.1016/0014-2999(89)90734-6. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Creese I., Coyle J. T., Snyder S. H. Dopamine receptors localised on cerebral cortical afferents to rat corpus striatum. Nature. 1978 Feb 23;271(5647):766–768. doi: 10.1038/271766a0. [DOI] [PubMed] [Google Scholar]
- Schwarz S., Pohl P., Zhou G. Z. Steroid binding at sigma-"opioid" receptors. Science. 1989 Dec 22;246(4937):1635–1638. doi: 10.1126/science.2556797. [DOI] [PubMed] [Google Scholar]
- Seeman P. Atypical neuroleptics: role of multiple receptors, endogenous dopamine, and receptor linkage. Acta Psychiatr Scand Suppl. 1990;358:14–20. doi: 10.1111/j.1600-0447.1990.tb05280.x. [DOI] [PubMed] [Google Scholar]
- Seeman P., Lee T., Chau-Wong M., Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976 Jun 24;261(5562):717–719. doi: 10.1038/261717a0. [DOI] [PubMed] [Google Scholar]
- Shannon H. E. Pharmacological evaluation of N-allynormetazocine (SKF 10,047) on the basis of its discriminative stimulus properties in the rat. J Pharmacol Exp Ther. 1983 Apr;225(1):144–152. [PubMed] [Google Scholar]
- Sharkey J., Glen K. A., Wolfe S., Kuhar M. J. Cocaine binding at sigma receptors. Eur J Pharmacol. 1988 Apr 27;149(1-2):171–174. doi: 10.1016/0014-2999(88)90058-1. [DOI] [PubMed] [Google Scholar]
- Shearman G. T., Herz A. Non-opioid psychotomimetic-like discriminative stimulus properties of N-allylnormetazocine (SKF 10,047) in the rat. Eur J Pharmacol. 1982 Aug 27;82(3-4):167–172. doi: 10.1016/0014-2999(82)90506-4. [DOI] [PubMed] [Google Scholar]
- Sherman A. D., Davidson A. T., Baruah S., Hegwood T. S., Waziri R. Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett. 1991 Jan 2;121(1-2):77–80. doi: 10.1016/0304-3940(91)90653-b. [DOI] [PubMed] [Google Scholar]
- Sherman A. D., Hegwood T. S., Baruah S., Waziri R. Deficient NMDA-mediated glutamate release from synaptosomes of schizophrenics. Biol Psychiatry. 1991 Dec 15;30(12):1191–1198. doi: 10.1016/0006-3223(91)90155-f. [DOI] [PubMed] [Google Scholar]
- Shibuya H., Mori H., Toru M. Sigma receptors in schizophrenic cerebral cortices. Neurochem Res. 1992 Oct;17(10):983–990. doi: 10.1007/BF00966825. [DOI] [PubMed] [Google Scholar]
- Singh L., Wong E. H., Kesingland A. C., Tricklebank M. D. Evidence against an involvement of the haloperidol-sensitive sigma recognition site in the discriminative stimulus properties of (+)-N-allylnormetazocine ((+)-SKF 10,047). Br J Pharmacol. 1990 Jan;99(1):145–151. doi: 10.1111/j.1476-5381.1990.tb14668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snell L. D., Johnson K. M., Yi S. J., Lessor R. A., Rice K. C., Jacobson A. E. Phencyclidine (PCP)-like inhibition of N-methyl-D-aspartate-evoked striatal acetylcholine release, H-TCP binding and synaptosomal dopamine uptake by metaphit, a proposed PCP receptor acylator. Life Sci. 1987 Dec 14;41(24):2645–2654. doi: 10.1016/0024-3205(87)90279-7. [DOI] [PubMed] [Google Scholar]
- Snyder S. H., Largent B. L. Receptor mechanisms in antipsychotic drug action: focus on sigma receptors. J Neuropsychiatry Clin Neurosci. 1989 Winter;1(1):7–15. doi: 10.1176/jnp.1.1.7. [DOI] [PubMed] [Google Scholar]
- Snyder S. H. Pharmacology. The dopamine connection. Nature. 1990 Sep 13;347(6289):121–122. doi: 10.1038/347121a0. [DOI] [PubMed] [Google Scholar]
- Sokoloff P., Giros B., Martres M. P., Bouthenet M. L., Schwartz J. C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990 Sep 13;347(6289):146–151. doi: 10.1038/347146a0. [DOI] [PubMed] [Google Scholar]
- Steinfels G. F., Tam S. W., Cook L. Electrophysiological effects of selective sigma-receptor agonists, antagonists, and the selective phencyclidine receptor agonist MK-801 on midbrain dopamine neurons. Neuropsychopharmacology. 1989 Sep;2(3):201–208. doi: 10.1016/0893-133x(89)90023-7. [DOI] [PubMed] [Google Scholar]
- Steinfels G. F., Tam S. W. Selective sigma receptor agonist and antagonist affect dopamine neuronal activity. Eur J Pharmacol. 1989 Apr 12;163(1):167–170. doi: 10.1016/0014-2999(89)90413-5. [DOI] [PubMed] [Google Scholar]
- Su T. P. Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther. 1982 Nov;223(2):284–290. [PubMed] [Google Scholar]
- Su T. P. HR 375: a potential antipsychotic drug that interacts with dopamine D2 receptors and sigma-receptors in the brain. Neurosci Lett. 1986 Nov 11;71(2):224–228. doi: 10.1016/0304-3940(86)90563-x. [DOI] [PubMed] [Google Scholar]
- Su T. P., London E. D., Jaffe J. H. Response: Steroid Binding at sgr-"Opioid" Receptors. Science. 1989 Dec 22;246(4937):1637–1638. doi: 10.1126/science.246.4937.1637. [DOI] [PubMed] [Google Scholar]
- Su T. P., London E. D., Jaffe J. H. Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science. 1988 Apr 8;240(4849):219–221. doi: 10.1126/science.2832949. [DOI] [PubMed] [Google Scholar]
- Su T. P. Sigma receptors. Putative links between nervous, endocrine and immune systems. Eur J Biochem. 1991 Sep 15;200(3):633–642. doi: 10.1111/j.1432-1033.1991.tb16226.x. [DOI] [PubMed] [Google Scholar]
- Su T. P., Weissman A. D., Yeh S. Y. Endogenous ligands for sigma opioid receptors in the brain ("sigmaphin"): evidence from binding assays. Life Sci. 1986 Jun 16;38(24):2199–2210. doi: 10.1016/0024-3205(86)90572-2. [DOI] [PubMed] [Google Scholar]
- Sunahara R. K., Guan H. C., O'Dowd B. F., Seeman P., Laurier L. G., Ng G., George S. R., Torchia J., Van Tol H. H., Niznik H. B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature. 1991 Apr 18;350(6319):614–619. doi: 10.1038/350614a0. [DOI] [PubMed] [Google Scholar]
- Tam S. W., Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5618–5621. doi: 10.1073/pnas.81.17.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tam S. W., Mitchell K. N. Neuropeptide Y and peptide YY do not bind to brain sigma and phencyclidine binding sites. Eur J Pharmacol. 1991 Jan 25;193(1):121–122. doi: 10.1016/0014-2999(91)90210-h. [DOI] [PubMed] [Google Scholar]
- Tam S. W. Naloxone-inaccessible sigma receptor in rat central nervous system. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6703–6707. doi: 10.1073/pnas.80.21.6703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]
- Van Tol H. H., Bunzow J. R., Guan H. C., Sunahara R. K., Seeman P., Niznik H. B., Civelli O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature. 1991 Apr 18;350(6319):610–614. doi: 10.1038/350610a0. [DOI] [PubMed] [Google Scholar]
- Vaupel D. B. Naltrexone fails to antagonize the sigma effects of PCP and SKF 10,047 in the dog. Eur J Pharmacol. 1983 Sep 2;92(3-4):269–274. doi: 10.1016/0014-2999(83)90297-2. [DOI] [PubMed] [Google Scholar]
- Wachtel H., Turski L. Glutamate: a new target in schizophrenia? Trends Pharmacol Sci. 1990 Jun;11(6):219–220. doi: 10.1016/0165-6147(90)90243-2. [DOI] [PubMed] [Google Scholar]
- Wachtel S. R., White F. J. Electrophysiological effects of BMY 14802, a new potential antipsychotic drug, on midbrain dopamine neurons in the rat: acute and chronic studies. J Pharmacol Exp Ther. 1988 Jan;244(1):410–416. [PubMed] [Google Scholar]
- Walker J. M., Bowen W. D., Walker F. O., Matsumoto R. R., De Costa B., Rice K. C. Sigma receptors: biology and function. Pharmacol Rev. 1990 Dec;42(4):355–402. [PubMed] [Google Scholar]
- Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]
- Weber E., Sonders M., Quarum M., McLean S., Pou S., Keana J. F. 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8784–8788. doi: 10.1073/pnas.83.22.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberger D. R. Hippocampal injury and chronic schizophrenia. Biol Psychiatry. 1991 Mar 1;29(5):509–511. doi: 10.1016/0006-3223(91)90278-t. [DOI] [PubMed] [Google Scholar]
- Weissman A. D., Broussolle E. P., London E. D. In vivo binding of [3H]d-N-allylnormetazocine and [3H]haloperidol to sigma receptors in the mouse brain. J Chem Neuroanat. 1990 Sep-Oct;3(5):347–354. [PubMed] [Google Scholar]
- Weissman A. D., Casanova M. F., Kleinman J. E., London E. D., De Souza E. B. Selective loss of cerebral cortical sigma, but not PCP binding sites in schizophrenia. Biol Psychiatry. 1991 Jan 1;29(1):41–54. doi: 10.1016/0006-3223(91)90209-5. [DOI] [PubMed] [Google Scholar]
- Weissman A. D., Su T. P., Hedreen J. C., London E. D. Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther. 1988 Oct;247(1):29–33. [PubMed] [Google Scholar]
- Willetts J., Balster R. L. Phencyclidine-like discriminative stimulus properties of MK-801 in rats. Eur J Pharmacol. 1988 Jan 27;146(1):167–169. doi: 10.1016/0014-2999(88)90498-0. [DOI] [PubMed] [Google Scholar]
- Wolfe S. A., Jr, Culp S. G., De Souza E. B. Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology. 1989 Mar;124(3):1160–1172. doi: 10.1210/endo-124-3-1160. [DOI] [PubMed] [Google Scholar]
- Woodruff G. N., Hill D. R., Boden P., Pinnock R., Singh L., Hughes J. Functional role of brain CCK receptors. Neuropeptides. 1991 Jul;19 (Suppl):45–56. doi: 10.1016/0143-4179(91)90082-t. [DOI] [PubMed] [Google Scholar]
- Zhou G. Z., Musacchio J. M. Computer-assisted modeling of multiple dextromethorphan and sigma binding sites in guinea pig brain. Eur J Pharmacol. 1991 Apr 25;206(4):261–269. doi: 10.1016/0922-4106(91)90108-t. [DOI] [PubMed] [Google Scholar]
- Zukin S. R., Zukin R. S. Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5372–5376. doi: 10.1073/pnas.76.10.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rossum J. M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966 Apr;160(2):492–494. [PubMed] [Google Scholar]