Skip to main content
. 2025 Jan 30;11:e2579. doi: 10.7717/peerj-cs.2579

Algorithm 2 . Fast binary logistic regression (FBLR).

1: procedure FBLR( X, y, f, λ, γ, ξ, K, Ctolerance)
2:    Initialization
3:     n,d,r,U^,S^,V^ LowRankApproximation (X,ξ)
4:     F=V^S^1U^
5:     w=Fy n Initializing weights via the pseudo-inverse
6:    if (λ>0 or γ>0) then
7:       GS^V^
8:       v1nG(U^(y12))
9:   else
10:      yqU^(U^(y12))
11:  end if
12:  Iteration
13:  for k0 to K do
14:      w^w
15:      Z diag(z) z = vector (zi), Eq. (6)
16:     if (λ>0 or γ>0) then
17:        H diag(h)  h = vector (hi), Eq. (11)
18:        A2nG(U^ZU^)G+λdI+γdH
19:        bλdw(k)+v
20:        w solve (A,b) h Applying Cholesky decomposition for solving Ax=b
21:     else
22:         w12FZ1yq
23:     end if
24:     if (k3 and ||ww^||Ctolerance) then
25:        break
26:     end if
27:  end for
28:  Finalization
29:  return w
30: end procedure