Table 2. Comparing performance with baseline models.
Model | ML model | Weighted-AUCROC | Weighted-AUCPR | Weighted-F1 | MCC | ACC |
---|---|---|---|---|---|---|
BERT | XGB | 0.9939 | 0.9704 | 0.9312 | 0.9224 | 0.9304 |
KNN | 0.9748 | 0.9222 | 0.9226 | 0.9127 | 0.9217 | |
SVM | 0.9940 | 0.9526 | 0.9132 | 0.9030 | 0.9130 | |
RF | 0.9934 | 0.9644 | 0.9213 | 0.9127 | 0.9217 | |
RoBERTa | XGB | 0.9930 | 0.9660 | 0.9171 | 0.9077 | 0.9174 |
KNN | 0.9768 | 0.9212 | 0.9216 | 0.9126 | 0.9217 | |
SVM | 0.9937 | 0.9672 | 0.9172 | 0.9078 | 0.9174 | |
RF | 0.9953 | 0.9720 | 0.9213 | 0.9126 | 0.9217 | |
LLaMA2 | XGB | 0.9926 | 0.9673 | 0.9312 | 0.9223 | 0.9304 |
KNN | 0.9791 | 0.9325 | 0.9222 | 0.9129 | 0.9217 | |
SVM | 0.9945 | 0.9628 | 0.9306 | 0.9225 | 0.9304 | |
RF | 0.9922 | 0.9639 | 0.9350 | 0.9273 | 0.9348 |
Note:
Bold indicates the highest performance.