Skip to main content
. 2025 Feb 21;11:e2720. doi: 10.7717/peerj-cs.2720

Table 1. Tuning parameters used for each model in implementing hyperparameter tuning. Some of these tuning parameters are lifted from Nanda & Dutta (2023), Mantovani et al. (2015), Probst, Boulesteix & Bischl (2019).

Classifiers Tuning Parameters
SVM C: uniform ( 23,215)
gamma: auto or scale
kernel: rbf
RF n_estimators: 1–350
max_depth: 1–5
min_samples_split: 1–10
KNN n_neighbors: 1–500
LDA solver: svd or lsqr or eigen
shrinkage: uniform (0, 1)
CART max_depth: 1–30
min_samples_leaf: 1–60
min_samples_split: 1–60
PHCA homology_dimension: H0 only, H1 only, H0 and H1