Table 1. Tuning parameters used for each model in implementing hyperparameter tuning. Some of these tuning parameters are lifted from Nanda & Dutta (2023), Mantovani et al. (2015), Probst, Boulesteix & Bischl (2019).
Classifiers | Tuning Parameters |
---|---|
SVM | C: uniform ( ) |
gamma: auto or scale | |
kernel: rbf | |
RF | n_estimators: 1–350 |
max_depth: 1–5 | |
min_samples_split: 1–10 | |
KNN | n_neighbors: 1–500 |
LDA | solver: svd or lsqr or eigen |
shrinkage: uniform (0, 1) | |
CART | max_depth: 1–30 |
min_samples_leaf: 1–60 | |
min_samples_split: 1–60 | |
PHCA | homology_dimension: only, only, and |