Skip to main content
. 2025 Feb 25;11:e2682. doi: 10.7717/peerj-cs.2682

Algorithm 1. MO-SEHM.

 1:  Inputs: Dataset D = i=1N (Xi, Yi).
 2:  Outputs: Optimal solution for HF mortality.
 3:  Initial-Phase: Develop the SEHM.
 4:   DTm Generate the number decision tree
 5:  for i 1; im; i ++ do
 6:      Bs bootstrap samples from Dtrain
 7:      DTi built decision trees
 8:      BPi producing the base predictions
 9:  end for
10:  for j 1; jf; k++ do
11:      MFj generating the meta-features using BP
12:      SEHM evaluate MF using LG
13:  end for
14:  Final-Phase: Apply NSGA-II and integrate SEHM.
15:  Initialize parameters: population (P), generations (G),…,
16:   L length of input features
17:  for l 1; l L; l++ do
18:     for g 1; g G; g++ do
19:        for p 1; p P; p++ do
20:            FitnesspSEHM(Xp(SEF))
21:        end for
22:         NextGENNSGAII(P,Fitness)
23:     end for
24:  end for
25:  PFIdentifyPF(NextGEN,Fitness)
26:  OptimalSolutionChooseOptimalSolutation(PF)