Table 5. Evaluate the different performance metrics for our employed classifiers by applying NSGA-II.
| Metrics | MO-DT | MO-SVM | MO-KNN | MO-RF | MO-ET | MO-SEHM |
|---|---|---|---|---|---|---|
| Accuracy | 0.8947 | 0.8859 | 0.9230 | 0.9230 | 0.9385 | 0.9487 |
| Precision | 0.8688 | 0.8666 | 0.9152 | 0.9313 | 0.9491 | 0.9482 |
| Recall | 0.9298 | 0.9122 | 0.9310 | 0.9103 | 0.9211 | 0.9482 |
| F1-score | 0.8983 | 0.8888 | 0.9230 | 0.9206 | 0.9348 | 0.9482 |
| J-score | 0.8153 | 0.80 | 0.8571 | 0.8604 | 0.8972 | 0.9016 |
| CK-score | 0.7894 | 0.7719 | 0.8461 | 0.8380 | 0.8501 | 0.8974 |
| H-loss | 0.1052 | 0.1140 | 0.0769 | 0.0769 | 0.0614 | 0.0512 |