Skip to main content
. 2025 Feb 25;11:e2682. doi: 10.7717/peerj-cs.2682

Table 8. Performance comparison between our approach and existing ML-based HF mortality diagnosis methods.

Study Data source Data balancing method Multi-objective optimization Performed model Achieve accuracy Explainable AI
Newaz, Ahmed & Haq (2021) FIOC SMOTE (✗) RF 76.25% (✗)
Ishaq et al. (2021) FIOC SMOTE (✗) ET 92.62% (✗)
Le et al. (2021) UCI (✗) (✗) RF 74% (✗)
Hussain et al. (2021) Physionet databases (✗) (✗) SVM 88.79% (✗)
Sutradhar et al. (2023b) FIOC SMOTE-ENN (✗) IBS 92.75% (✗)
Li et al. (2022) The eICU-CRD (v-0.2) (✗) (✗) XGB 82.6% SHAP
Mishra (2022) FIOC SMOTE (✗) SVM 83.33% (✗)
Plati et al. (2021) IUHI SMOTE (✗) ROT 91.23% (✗)
Nishat et al. (2022) FIOC SMOTE-ENN (✗) RF 90% (✗)
Sabahi, Vali & Shafie (2023) PRCVD SMOTE (✗) XGB 76.4% (✗)
Luo et al. (2022) MIMIC (✗) (✗) XGB 83.1% (✗)
Chicco & Jurman (2020) FIOC (✗) (✗) RF 74% (✗)
Mpanya et al. (2023) PMRCardio Database (✗) (✗) RF 88% (✗)
Mohan, Thirumalai & Srivastava (2019) UCI (✗) (✗) HRFLM 88.7% (✗)
Rahman et al. (2023) Physionet (✗) (✗) Stacking 89.41% (✗)
Sutradhar et al. (2023c) FIOC BOO-ST (✗) CBCEC 93.67% (✗)
This study FIOC SMOTE and Tomeklink NSGA-II SEHM 94.87% LIME