Skip to main content
. 2025 Feb 18;11:e2716. doi: 10.7717/peerj-cs.2716

Table 2. Performance metrics of different grided models.

Model Instance Accuracy Precision Recall F1-score Training (s) Testing (s)
RNN Fraud 0.79 0.70 0.07 0.13 40.17 0.45
Normal 0.79 0.80 0.99 0.88
LR Fraud 0.94 0.81 0.94 0.96 1.13 0.00
Normal 0.94 0.98 0.94 0.96
LOF Fraud 0.77 0.37 0.09 0.14 8.50 0.19
Normal 0.77 0.79 0.96 0.87
IF Fraud 0.28 0.23 0.98 0.37 41.67 0.05
Normal 0.28 0.93 0.08 0.15
SVM Fraud 0.98 0.92 0.97 0.94 77.83 0.08
Normal 0.98 0.99 0.98 0.98
RF Fraud 0.99 0.98 0.95 0.97 1,572.28 0.03
Normal 0.99 0.99 0.99 0.99
XGBoost Fraud 0.99 0.96 0.98 0.97 408.53 0.00
Normal 0.99 0.99 0.99 0.99