Table 2. Performance metrics of different grided models.
Model | Instance | Accuracy | Precision | Recall | F1-score | Training (s) | Testing (s) |
---|---|---|---|---|---|---|---|
RNN | Fraud | 0.79 | 0.70 | 0.07 | 0.13 | 40.17 | 0.45 |
Normal | 0.79 | 0.80 | 0.99 | 0.88 | |||
LR | Fraud | 0.94 | 0.81 | 0.94 | 0.96 | 1.13 | 0.00 |
Normal | 0.94 | 0.98 | 0.94 | 0.96 | |||
LOF | Fraud | 0.77 | 0.37 | 0.09 | 0.14 | 8.50 | 0.19 |
Normal | 0.77 | 0.79 | 0.96 | 0.87 | |||
IF | Fraud | 0.28 | 0.23 | 0.98 | 0.37 | 41.67 | 0.05 |
Normal | 0.28 | 0.93 | 0.08 | 0.15 | |||
SVM | Fraud | 0.98 | 0.92 | 0.97 | 0.94 | 77.83 | 0.08 |
Normal | 0.98 | 0.99 | 0.98 | 0.98 | |||
RF | Fraud | 0.99 | 0.98 | 0.95 | 0.97 | 1,572.28 | 0.03 |
Normal | 0.99 | 0.99 | 0.99 | 0.99 | |||
XGBoost | Fraud | 0.99 | 0.96 | 0.98 | 0.97 | 408.53 | 0.00 |
Normal | 0.99 | 0.99 | 0.99 | 0.99 |