Table 1. Pseudocode for proposed algorithms.
pseudocode for proposed algorithms |
---|
Data Loading |
1: shenzhen_data = load_images(shenzhen_path) |
2: montgomery_data = load_images(montgomery_path) |
3: combine_datasets(shenzhen_data, montgomery_data) |
4: train_data, val_data, test_data = load_data("combined_data ") |
5: return train_test_split(combined_data, test_size=0.2) |
Training and Evaluation of Models |
6: for model_type in ["U-Net","Prop.U-Net","V-Net","Prop. V-Net","Seg-Net"]: |
7: Training and evaluation: {model_type} |
8: model = create_model(model_type) |
9: models = {build_unet(input_shape),build_prop_unet(input_shape),build_vnet(input_shape), build_prop_vnet(input_shape), "Seg-Net": build_segnet(input_shape)} |
Model Results |
10: history, evaluation = train_and_evaluate_model(model, train_data, val_data) |
11: ResultofModel: {evaluation}") metrics=["IOU", "dice_coefficient"]) |
Prediction and Visualization on Test Data |
12: predict_and_visualize(model, test_data) |