Table 1. Pseudocode for proposed algorithms.
| pseudocode for proposed algorithms |
|---|
| Data Loading |
| 1: shenzhen_data = load_images(shenzhen_path) |
| 2: montgomery_data = load_images(montgomery_path) |
| 3: combine_datasets(shenzhen_data, montgomery_data) |
| 4: train_data, val_data, test_data = load_data("combined_data ") |
| 5: return train_test_split(combined_data, test_size=0.2) |
| Training and Evaluation of Models |
| 6: for model_type in ["U-Net","Prop.U-Net","V-Net","Prop. V-Net","Seg-Net"]: |
| 7: Training and evaluation: {model_type} |
| 8: model = create_model(model_type) |
| 9: models = {build_unet(input_shape),build_prop_unet(input_shape),build_vnet(input_shape), build_prop_vnet(input_shape), "Seg-Net": build_segnet(input_shape)} |
| Model Results |
| 10: history, evaluation = train_and_evaluate_model(model, train_data, val_data) |
| 11: ResultofModel: {evaluation}") metrics=["IOU", "dice_coefficient"]) |
| Prediction and Visualization on Test Data |
| 12: predict_and_visualize(model, test_data) |