Table 8. Performance evaluations of various approaches with proposed models.
Study | Dice | Accuracy | Dataset |
---|---|---|---|
Ronneberger, Fischer & Brox (2015) | 0.9029 | 0.9036 | JSRT |
Montgomery | |||
Milletari, Navab & Ahmadi (2019) | 0.9667 | 0.9804 | Montgomery |
Shenzhen | |||
Rajaraman et al. (2018) | – | 0.9170 | Own |
Arvind et al. (2023) | 0.9187 | 0.9387 | JSRT |
Montgomery | |||
Shenzhen | |||
Liu et al. (2022) | 0.977 | 0.9890 | JSRT |
Montgomery | |||
Showkatian et al. (2022) | – | 0.8725 | Maryland |
Montgomery | |||
Shenzhen | |||
Oktay et al. (2018) | 0.9723 | 0.9816 | Own |
Huang et al. (2020) | 0.9290 | 0.9187 | ISBI LiTS 2017 |
Alam et al. (2024) | 0.9413 | 0.8916 | Shenzhen |
Boudoukhani et al. (2024) | 0.9742 | 0.9868 | Montgomery |
0.9607 | 0.9798 | Shenzhen | |
Slimani & Bentourkia (2024) | 0.9570 | 0.9790 | Montgomery |
Ammar, Gasmi & Ltaifa (2024) | – | 0.94 | Montgomery |
– | 0.96 | Shenzhen | |
Proposed U-Net | 0.9643 | 0.9824 | Montgomery Shenzhen |
Proposed V-Net | 0.9642 | 0.9824 | Montgomery Shenzhen |
Proposed Seg-Net | 0.9551 | 0.9834 | Montgomery Shenzhen |