Skip to main content
. 2025 Feb 25;11:e2706. doi: 10.7717/peerj-cs.2706

Table 2. Performance comparison between GNN-A2 and baselines.

To enhance the clarity of the experimental results, the optimal results for each dataset are highlighted in bold, and the suboptimal ones are indicated with underlining.

Model MovieLens 1M Book-crossing Taobao
AUC Logloss NDCG@5 NDCG@10 AUC Logloss NDCG@5 NDCG@10 AUC Logloss NDCG@5 NDCG@10
FM 0.8761 0.4409 0.8143 0.8431 0.7417 0.5771 0.7616 0.8029 0.6171 0.2375 0.812 0.1120
NFM 0.8985 0.3996 0.8486 0.8832 0.7988 0.5432 0.7989 0.8326 0.6550 0.2122 0.0997 0.1251
W&D 0.9043 0.3878 0.8538 0.8869 0.8105 0.5366 0.8048 0.8381 0.6531 0.2124 0.0959 0.1242
Deep-FM 0.9049 0.3856 0.8510 0.8848 0.8127 0.5379 0.8088 0.8400 0.6550 0.2115 0.0974 0.1243
AutoInt 0.9034 0.3883 0.8619 0.8931 0.8130 0.5355 0.8127 0.8472 0.6434 0.2146 0.0924 0.1206
Fi-GNN 0.9063 0.3871 0.8705 0.9029 0.8136 0.5338 0.8094 0.8522 0.6462 0.2131 0.0986 0.1241
L0-SIGN 0.9072 0.3846 0.8849 0.9094 0.8163 0.5274 0.8148 0.8629 0.6547 0.2124 0.1006 0.1259
GMCF 0.9127 0.3789 0.9374 0.9436 0.8228 0.5233 0.8671 0.8951 0.6679 0.1960 0.1112 0.1467
CAN 0.9133 0.3773 0.9396 0.9442 0.8235 0.5143 0.8722 0.8996 0.6776 0.1919 0.1130 0.1494
GNN-A2 0.9101 0.3846 0.9511 0.9506 0.8400 0.4956 0.9003 0.9137 0.6715 0.1944 0.1159 0.1526
Improv 1.22% 0.68% 2.00% 3.64% 3.22% 1.57% 2.57% 2.14%