Table 5. The impact of varying MLP depths on GNN-A2’s performance.
To enhance the clarity of the experimental results, the optimal results for each dataset are highlighted in bold, and the suboptimal ones are indicated with underlining.
Model | MovieLens 1M | Book-crossing | Taobao | |||
---|---|---|---|---|---|---|
AUC | NDCG@10 | AUC | NDCG@10 | AUC | NDCG@10 | |
GNN-A2-0 | 0.9050 | 0.9421 | 0.8296 | 0.9015 | 0.6702 | 0.1467 |
GNN-A2-1 | 0.9101 | 0.9506 | 0.8400 | 0.9137 | 0.6715 | 0.1526 |
GNN-A2-2 | 0.9091 | 0.9489 | 0.8387 | 0.9090 | 0.6709 | 0.1503 |
GNN-A2-3 | 0.9076 | 0.9456 | 0.8367 | 0.9073 | 0.6704 | 0.1489 |