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Abstract
Background: Recent advances in molecular biology techniques provide an opportunity for
developing detailed mathematical models of biological processes. An iterative scheme is introduced
for model identification using available system knowledge and experimental measurements.

Results: The scheme includes a state regulator algorithm that provides estimates of all system
unknowns (concentrations of the system components and the reaction rates of their inter-
conversion). The full system information is used for estimation of the model parameters. An
optimal experiment design using the parameter identifiability and D-optimality criteria is formulated
to provide "rich" experimental data for maximizing the accuracy of the parameter estimates in
subsequent iterations. The importance of model identifiability tests for optimal measurement
selection is also considered. The iterative scheme is tested on a model for the caspase function in
apoptosis where it is demonstrated that model accuracy improves with each iteration. Optimal
experiment design was determined to be critical for model identification.

Conclusion: The proposed algorithm has general application to modeling a wide range of cellular
processes, which include gene regulation networks, signal transduction and metabolic networks.

Background
A systems level understanding of highly complex biologi-
cal systems requires an integration of experimental tech-
niques and computational research [1]. Current
molecular biology techniques can generate high-through-
put quantitative data that support in silico research using
mathematical models [2]. These models can be used to
simulate and study the dynamic interactions among the
components of cellular systems as well as the systems'
responses to external perturbations and signals. Such
tools offer enormous potential for understanding cellular
functions at the organism level [3]. Mathematical models
also serve as test beds for generating hypotheses and
designing experiments to test them [4]. Furthermore, they
provide bases for model-based product and process

design applications. Useful insights and predictions have
been obtained for several biological systems from compu-
tational modeling and analysis. A few examples include
the metabolic network analysis of Escherichia coli growth
on glucose and acetate [5], the MAP kinase signaling path-
ways [6] and caspase function in apoptosis [7], and bifur-
cation analysis of cell cycle in Saccharomyces cerevesiae [8].

An iterative process for model development and the test-
ing of hypotheses has been proposed by many researchers
in the field and was recently highlighted by Kitano [1]. A
qualitative approach of this process is described in [2]. In
addition, Rabitz and co-workers [9] have recently devel-
oped an iterative method for closed loop parameter iden-
tification in biochemical reaction networks. A global
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inversion algorithm was used to extract the parameter esti-
mates that minimize the differences between model pre-
diction and experimental data. Unfortunately, global
search methods typically have high computational
requirements, and thus, do not scale very well with the
system size. In this work, a quantitative model identifica-
tion is developed that effciently obtains parameter esti-
mates and facilitates scalability to very large network sizes.
A proposed strategy is described in Section 2, with an
emphasis on the modeling element. The modeling strat-
egy is decomposed into three main steps: (1) determining
the connectivity of the biological network and the interac-
tions of the sub-components, (2) formulating the kinetics
of inter-conversion among the subcomponents, and (3)
estimating the parameters in the rate equations. To the
authors' knowledge, this work represents the first docu-
mented example of multiple iterations for model refine-
ment using such a framework in systems biology.

The parameter estimation from experimental data
remains the bottleneck in the model development [4].
Banga and coworkers [10] have compared several
advanced deterministic and stochastic global optimiza-
tion methods for parameter identification from available
experimental data. It was observed that the traditional gra-
dient-based optimization methods often failed to arrive at
the global optimal solutions. Deterministic methods [11-
13] can achieve global optimality for certain classes of
problems, but there is no guarantee of convergence in
finite time [14]. Stochastic strategies [14-16] can locate
the parameter region containing the global solution with
relatively better effciency, but global optimality is not
guaranteed. Furthermore, both methods suffer from the
large computational burden required, even for moder-
ately sized problems. Moreover, the validity of model
with the estimated parameters over the entire operating
space remains to be determined.

Parameter identifiability tests should be performed prior
to the estimation process to ensure that the parameter esti-
mation problem is well-posed. Further, the identifiability
tests assist in selection of optimal measurements. Several
researchers [17-19] have developed methods to determine
whether a parameter is "identifiable a priori", i.e., identifi-
able from a given experiment design using the available
measurements. A similar concept known as "practical
identifiability" is concerned with the achievable accuracy
of the parameter estimates. The confidence interval for the
model parameters are determined using the Fisher Infor-
mation Matrix (FIM) [20,21]. Doyle and coworkers [22]
have performed model identifiability studies for a gene
regulatory network using gene expression data, in which
the identifiability of the parameters was found to be
strongly dependent on the driving function.

The final step in the iterative model development process
is the design of "optimal experiments" that would provide
rich experimental data for improving the parameter esti-
mates. Experiments can also be designed for discrimina-
tion among competing model structures that translates to
selection between multiple proposed mechanisms of cel-
lular function. Asprey and Macchietto [23] have devel-
oped a strategy of optimal experiment design for model
structural identifiability. The strategy was used to identify
the kinetics of the reactions in the fermentation of Saccha-
romyces cerevesiae. Kremling and co-workers [24] propose
several strategies for model discrimination to identify the
correct reaction mechanism of a test metabolic network.
Banga and coworkers [25] have formulated the optimal
design problem, using a scalar function of the Fisher
Information Matrix (FIM) as the performance index, for
parameter estimation of nonlinear dynamic systems.

In this work, an iterative procedure for model identifica-
tion is proposed and applied to the caspase-dependent
apoptosis system. An optimal measurement set is deter-
mined using the Fisher Information Matrix (FIM). The
parameter estimation from partial measurements is
decoupled into two parts. First, the available measure-
ments are used to estimate the profiles of all unmeasured
concentrations and reaction rates using a State Regulator
Problem (SRP) formulation. In the second part the con-
centration and rate estimates are used to determine the
model parameter values. The SRP formulation in this
work is an extension of the dynamic Flux Balance Analysis
(dFBA) approach developed by Doyle and coworkers [26].
Finally, the model-based experiment design uses parame-
ter identifiability and D-optimality criteria to obtain the
optimal experimental procedure that would generate the
most informative data for model refinement in the next
iteration.

Results
The iterative scheme for model identification is shown in
Figure 1. The optimal set of measurements is determined
a priori. For an effcient model identification, a significant
fraction of the unknown model parameters should be
identifiable. In the case of poor identifiability, a higher
number of measurements would be motivated. Also, the
model complexity could be reduced to decrease the
number of parameters; but this does not guarantee identi-
fiability of the reduced number of parameters. Alterna-
tively, a richer protocol (e.g. perturbation sequence [22])
might yield improved identifiability. In this work, selec-
tion of the a priori optimal measurement set is restricted to
the "preliminary" experiment design that may be
suboptimal.

The model connectivity and reaction mechanisms are
developed from existing biological knowledge and are
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assumed to be known. The network connectivity, along
with the partial measurements (optimal), is used in the
State Regulator Problem (SRP) to obtain estimates of all
system unknowns (unmeasured concentrations and reac-
tion rates). Here it is important to note that the kinetics of
the reaction rates are not used in the SRP algorithm. Next,
the full estimates of the concentrations and the reaction
rates are used for estimating the parameters in the kinetic
model. This decouples the model identification into two
parts such that the parameters involved in the kinetic
equation of each reaction are independently determined
as opposed to simultaneously estimating full model
parameters from limited measurements. Next, the model

invalidation test, which is a critical step in model develop-
ment and the last "quality control" step before the desired
application [27-29], is performed. Invalidity of the model
could be determined by comparing model predictions
with experimental data that is not used in the SRP algo-
rithm. Further, model invalidity can occur if the model
predictions conflict with documented biological knowl-
edge of the system. In case of an invalid model, the model
parameters are refined in subsequent iterations using the
information obtained from the optimal experiment or by
expanding the measurement set. The process of model
identification is repeated in an iterative manner until an
"acceptable" model is obtained.

Iterative scheme for model identificationFigure 1
Iterative scheme for model identification.
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System
The mathematical model considered in this paper has the
following structure:

 = Ax + Br + C  (1)

where

r = f(x, p),  (2)

x represents the protein/metabolite/gene concentrations, r
the reaction rates, and p the model parameters. This is a
very general nonlinear state space model in the variable x.
The matrices A and C describe degradation and auto-gen-
eration respectively, whereas the matrix B represents the
stoichiometry of the biological network. The kinetics
among the proteins/metabolites/genes interactions show
up in the reaction rates r. The aforementioned model is a
continuous time invariant affine system from which a dis-
crete version can be derived by standard techniques using
a zero-order hold [30]. The resulting discrete model equa-
tion is represented as:

where

The discrete version of the model is used in the SRP esti-
mation algorithm.

Theory
Step 1: Determination of measurement set
The optimal measurement set consists of species whose
concentration measurements would have maximum ben-
efit for model identification, e.g, parameter identifiability
and accuracy. In this work, the measurement set is deter-
mined such that the model parameters can be estimated
accurately. The assessment of parameter identifiability in
a model is crucial prior to parameter estimation from
experimental data [31]. Identifiability is closely linked
with parametric sensitivity analysis through the Fisher
Information Matrix (FIM) [27]. The unidentifiable param-
eters are determined using the orthogonal procedure pro-
posed by MacAuley and coworkers [19]. Here, a scaled

sensitivity coeffcient matrix ( ) shown below is
computed:

where {p1, …, pk } are the model parameters, {η1, …, ηm }
are the response variables which include all possible
measurable quantities, {t1, t2, …, tN} are the sampling

times for the measurements, and  is the "initial" param-
eter value that is either the guess values of the parameter
or the value obtained from literature. The orthogonal
method is a geometric based approach where the number
of identifiable parameters correlates with the rank of the
orthogonalization of the scaled sensitivity matrix. The
parameters corresponding to the columns of orthogonal-
ized sensitivity matrix are deemed unindentifiable if the
norms are smaller than a given tolerance. The details of
the orthogonal method are not included here for the sake
of brevity.

The next step is to obtain a measurement set that maxi-
mizes the expected accuracy in the identifiable parameters
(practical identifiability). The Fisher Information Matrix
(FIM) along with the Cramer-Rao theorem are used to
determine a measurement set such that the estimated
parameters have minimum variance. A detailed descrip-
tion of the procedure and its theoretical foundation can
be found in [32]. Assuming that the measurement errors
are additive and Gaussian, the FIM is given by [33]:

FIM = JTWJ  (5)

where W is the inverse of the measurement error covari-
ance matrix and J denotes the sensitivity coefficient matrix
for the measured response variables:

The quantity {p1, …, pr} denotes the identifiable parame-

ter vector and { , …, } denotes the
measured response variable vector.
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The Cramer-Rao inequality establishes a lower bound on
the variance of the identifiable parameters given by:

σ2(pi) ≥ (FIM-1)ii  (7)

The 95% confidence interval (CI) for a parameter is given
by:

CI =  ± 1.96σ(pi)  (8)

In Equation (8) the lower bound of the variance is used.
Symmetry of the confidence region about the nominal
value is assumed. This results in the following definition
of the percentage deviation from the nominal value:

The optimal measurement set is chosen such that the sum
of the percentage error (E) for all the identifiable parame-
ters is minimized. In this work, the optimal set is deter-
mined by a brute-force search over all combinations of
measurement sets subject to restrictions that may be
imposed by the system. Doyle and co-workers have devel-
oped effcient rational algorithms to determine the opti-
mal measurement set with minimum computational
burden [34]. The confidence intervals for non-identifiable
parameters are infinitely large and hence are eliminated
from the analysis. Identifiability for these parameters can
be obtained only by a change in the experimental design
or by the selection of an alternative model structure.

Step 2: State Estimation Algorithm
Generally, it is not possible to measure all time-varying
components in a metabolic or signaling network. How-
ever, there are several techniques from systems engineer-
ing to estimate the behavior of unmeasured components
given partial measurements of other system constituents.
Bastin and Dochain have used an adaptive nonlinear
observer for estimation of specific growth rate and bio-
mass concentration [35]. Given accurate models,
Extended Kalman Filters (EKF) have had success in several
biological applications [36-38]. Artificial Neural Net-
works (ANN) have also found applications where
dynamic models are not available [39-41].

In this work, an extension of Dynamic Flux Balance Anal-
ysis (dFBA) [26] is developed to estimate unmeasured
concentration and reaction rate trajectories given partial
measurement sets. The premise of this approach is
straightforward: cellular processes have evolved regula-
tory structures that optimally use cellular resources. This
premise translates into two postulates; (1) network flows
are managed to minimize internal accumulation and (2)
networks are managed to minimize the number of edges

carrying flux at any given time. These two requirements
are analogous to a classic problem in automatic control,
namely, the State Regulator Problem (SRP). The SRP
based estimator uses the measurement set selected from
Step 1 to estimate unknown concentration and reaction
rate trajectories via a constrained convex programming
problem. The SRP estimator constrained by the key
measurements captures the optimal cellular behavior of
the system.

Estimates of the reaction rates at time step k and protein/
gene/metabolite concentrations at time step k + 1 are
determined by the SRP and the discrete mass balance
equations. The SRP must be solved at each sampling inter-
val to obtain estimates of the unknown rates and concen-
trations. Consider the model (Equation 3); the discrete
mass balance equations over a p step horizon are given by:

Where the matrices k+1, k, x and c are defined as

and the matrix r is given by

The SRP estimator is a Quadratic Program (QP) with two
cost terms, the cost of intermediate accumulation and the
cost of operating a network reaction. The SRP penalizes
intracellular metabolite or protein accumulation, but
does not explicitly forbid it. Moreover, because reactions
introduce an additional cost, the SRP only utilizes those
reactions required to satisfy the mass balances and ther-
modynamic constraints. Formally, the estimation prob-
lem is given by:

subject to:

k + 1 ≥ 0  (12)
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αr (k) ≤ k ≤ βr (k)  (13)

The SRP problem is subject to non-negativity constraints
(Equation 12), flux-directionality constraints (Equation
13) and constraints imposed by the measurement set.
Specifically, constraint of Equation 14 forces state esti-
mates belonging to the measurement set to equal the cor-

responding measured value. The quantities  denote
measurements that may have been corrupted with noise.

 specifies the tolerance around the measurement
within which the estimate is constrained to lie (incorpo-
rated to avoid numerical inconsistencies that may arise
due to noisy measurements). The term ΞX defines the
measurement set. The matrix Wx defines the cost of inter-
mediate accumulation whereas the matrix WR represents
the reaction cost:

For the caspase system considered in this work, the wx and
wr are taken to be the order of magnitude of the inverse of
the maximum value of the corresponding state or rate.
This requires only approximate information regarding
ranges of the protein concentrations and identification of
the slow versus the fast reactions:

Step 3: Parameter estimation
The estimates of the concentration profiles and the reac-
tion rates allow efficient determination of the parameter
values by decoupling the full parameter estimation into
multiple sets. Each set consists of parameters associated
with one reaction rate. The parameters are obtained by
minimizing the difference between the estimates of each
reaction rate and that predicted by the kinetics r (x, p),
which is a function of the concentrations. In case of the
first iteration the minimization follows:

where ri are the individual reaction rates and NR is the total
number of reactions. The kinetic parameters associated
with a reaction rate equation are determined independ-

ently from those with other reactions, i.e., the parameter
estimation is decoupled with respect to each reaction.

For subsequent iterations, the Bayesian estimation formu-
lation in [42] is used. In this formulation, in addition to
the difference between the estimates of the reaction rates
and the model predictions, the deviations of parameter
values from those obtained after the previous iteration are
minimized. The formulation can be represented as:

In the above equations,  is the estimate of the ith reaction

rate and  is the estimates of the concentrations obtained

from the SRP algorithm, ri( , p) is the predicted rate of
the ith  reaction from the kinetics in Equation 2, p are the
parameters associated with the ith  reaction rate, p0 are the
parameter values obtained from the previous iteration,
and Vε and Vp are the variances of the estimates of the reac-
tion rates and the prior parameter estimates. The parame-
ter variances are determined using the Fisher Information
Matrix (Equation 7). The variances of the non-identifiable
parameters are infinite and penalty for deviations for
these parameters are not considered in Equation 19. The
variance for the estimates of the reaction rates can be
determined from the expected noise in the measurements
from which the estimates are obtained.

Step 4: Model invalidation tests
Given the iterative nature of this framework, a termina-
tion criterion must be established. Poolla et al. [29] have
shown that for certain experimental data, it is not possible
to confirm whether the model is really valid; however,
one can conclude whether the model is not contradicted
by the given data. Model (in)validation tests are usually
based on the difference between the simulated and meas-
ured output and some statistics about these differences.
Typical statistics for the model errors include maximum
absolute value, mean value and variance [28]. In this
work, model invalidity is tested by determining the model
prediction errors using the estimated parameters. This
error is calculated as:

To implement this test, experimental data that was not
used in the SRP algorithm is required. The statistic used is
the maximum and mean value of the errors for the meas-
ured states. When the prediction errors are below a certain
desired value, the iterations are terminated.
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Step 5: Model-based optimal experiment design
The optimal experiment design determines the optimal
experiment to be performed for the next iteration such
that there is maximum information content in the meas-
urements. This would maximize the accuracy of the esti-
mated parameters. The model-based optimal experiment
design uses the Fisher Information Matrix as a measure of
the amount of information contained in a given set of
measurements about the model parameters [43]. The
optimization searches through the space of experimental
conditions or some parameterizations of the experimental
protocol. For example, an optimal ligand input can be
parameterized into a time series profile such that the opti-
mization variables are the levels of ligand at different
times (usually equally spaced in time). Naturally, the
optimization will be restricted by the limitations in the
experimental conditions and apparatus.

There exist several FIM-based optimality measures that
quantify the overall informativeness of the measurements
[32]. Among these, parameter identifiability and the D-
optimality are the most widely used measures. For accu-
rate model identification it is critical that maximum
number of the parameters be estimated accurately. Thus,
maximizing the number of identifiable parameters is the
primary criterion proposed for determining the next

experimental design. The orthogonal procedure proposed
by McAuley and co-workers [19] is used to determine the
number of identifiable parameters. There can be multiple
experimental designs with the same maximum number of
identifiable parameters. The selection among these is
done so as to maximize the informativeness of measure-
ment data. For this purpose, the D-optimality criteria is
proposed. The use of D-optimality translates to minimiz-
ing the confidence interval of all the identifiable parame-
ter estimates. The optimal experiment design criterion is
shown as follows:

where E denote the feasible experimental conditions
(defined by constraints in experiments), FIM is given in
Equation 5 and r denotes the number of identifiable
parameters. Thus, the identifiability is maximized in the
sense that the hyper-dimensional confidence interval is
minimized. For experimental designs with the maximum
number of identifiable parameters, the one with the high-
est determinant of the Fisher Information Matrix is
selected as the optimal design for the next experiment.

Sequence of simulations for model identification to test efficiency of optimal experiment design and optimal measurement selectionFigure 2
Sequence of simulations for model identification to test efficiency of optimal experiment design and optimal measurement 
selection.
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A case study
The proposed iterative model identification is applied to
the function of caspase-8 and caspase-9 in apoptosis. Cas-
pase enzymes are at the core of the cell's suicide machin-
ery. These enzymes are activated either by an external
signal or by stress, and activated enzymes will then dis-
mantle the cells. Varner and co-workers have developed a
model for the caspase function in apoptosis [7]. The
model describes the key elements of receptor-mediated
and stress-induced caspase activations. The model con-
sists of 19 states (enzymes) and 11 reactions with 27

parameters (11 rate constants and 16 saturation con-
stants; see Appendix for additional details of the model).
The in silico experiments in this study use the Varner
model as the "actual" system. Measurements are assumed
to be obtained from this "actual" system corrupted with
up to 10% noise. The iteration starts using a "initial"
parameter set, generated by perturbing the parameter val-
ues of the Varner model (considered as "exact") by 70–
100%. The external and stress signals that activate the cas-
pase system are considered as the manipulated variables
in Step 5. Model refinement is performed either by

Prediction profiles of the 19 protein concentrations for the test experiment for the caspase systemFigure 3
Prediction profiles of the 19 protein concentrations for the test experiment for the caspase system. Solid line: real system; 
dashed line: prediction with estimated parameters after first iteration (suboptimal experiment with suboptimal measurements); 
dash-dotted line: prediction with estimated parameters after second iteration (suboptimal experiment with optimal measure-
ments); dotted line: prediction with estimated parameters after second iteration (optimal experiment with suboptimal 
measurements)
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determination of an optimal experiment or by optimal
refinement of the measurement set. The performance of
each of these criteria for model refinement requires to be
tested. Therefore, in the first iteration, a "preliminary"
suboptimal experiment with a suboptimal measurement
set is considered. Moreover, in most cases of model iden-
tification, it is expected that preliminary experimental
data is available. This data is usually obtained from a sub-
optimal experiment design and does not include the opti-
mal set of measurements. The second iteration is
performed in two ways; one by improving the measure-
ment set and second by improving the experiment design.

This tests the performance of both refinement criteria. The
sequence of events is shown in Figure 2. It should be
noted that it would be best to use optimal experiment
design along with the optimal measurement set. However,
it may not always be possible to do so due to feasibility
issues specific to the particular system. Hence, this
approach is not considered in this work. Model identifica-
tion under less constrained conditions using a similar
framework is included in [44].

After the first iteration, it is observed that there is a signif-
icant improvement in the predictions with the estimated

Prediction profiles of the 11 reaction rates for the test experiment for the caspase systemFigure 4
Prediction profiles of the 11 reaction rates for the test experiment for the caspase system. Solid line: real system; dashed line: 
prediction with estimated parameters after first iteration (suboptimal experiment with suboptimal measurements); dash-dotted 
line: prediction with estimated parameters after second iteration (suboptimal experiment with optimal measurements); dotted 
line: prediction with estimated parameters after second iteration (optimal experiment with suboptimal measurements)
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parameters for both the protein concentrations and the
reaction rates, as shown in Figures 3 and 4. The high errors
with the "initial" parameters demonstrate that there is no
bias in the results based on the starting guess values for the
parameters and that there is indeed an improvement in
prediction of both the protein concentrations and the
reaction rates. However, the improvement is not suffcient
as observed from the invalidation test (see Methods). This
warrants a second iteration.

In general, the model predictions improve with the sec-
ond iteration, as shown again in Figures 3 and 4.
However, it is observed that the predictions are better for
the case with the optimal experiment design, in spite of a
suboptimal measurement set. This is due to the fact that
model performance depends strongly on the accuracy of
the estimated parameters. Using the suboptimal experi-
ment, only 14 of the 27 parameters were identifiable. The
optimal measurement set simply improved the confi-
dence in these 14 parameters. On the other hand, the opti-
mal experiment increased parameter identifiability to 18
parameters even with the suboptimal measurement set.
These result indicates that performance of model identifi-
cation is strongly linked with parameter identifiability.

Discussion
In the proposed algorithm, the network topology and the
mechanism of interactions in the pathway are assumed to
be known. Several approaches have been proposed in lit-
erature to determine the network connectivity from exper-
imental data [45-47]. In the case of unknown
connectivity, these approaches should be used prior to the
proposed model identification. The mismatch between
the model and the actual network can appear in two dif-
ferent aspects of the algorithm. First, the SRP step can fail
because there exist no feasible state and flux estimates that
satisfy the measurement constraints. Such scenario arises
mainly due to the network topology mismatch, and has
low probability to occur due to the large degree of
freedoms in a typical biological system. Alternatively, a
well-designed model (in)validation step catches the mis-
match between the model and the real system, e.g., an
independent measurement set contradicts the model pre-
diction. Also, if multiple models are proposed for a partic-
ular biological process, model discrimination methods
[24,48] can be used to identify the correct model struc-
ture. The effect of incorrect connectivity and/or mecha-
nism would depend on the degree of mismatch and is case
dependent.

The fact that cellular processes are carried out in an opti-
mal manner lends tremendous promise to the success of
this approach. In case the assumed optimality does not
represent the in vivo behavior, the estimates from SRP may
be inaccurate. However, the measurements (through the

constraints in Equation 14) can attenuate this problem by
restricting part of the estimates to match the observations.
The parameter estimates may also be inaccurate if the real
system deviates considerably from the assumed optimal
behavior and this deviation is not captured by the meas-
urements. The model identification framework has appli-
cability to all systems that could be represented in the
form shown in Equations 1 and 2. All biological processes
are complex, interconnected networks. A feature common
to these processes is that they have a fixed connectivity.
The proposed algorithm for model development could be
applied to metabolic networks, signaling processes and
gene networks.

The computation burden for solving the SRP is minimal
as it involves only a quadratic programming problem. The
parameter estimation is also not computationally inten-
sive due to the decoupling facilitated by SRP. A global
optimization algorithm can also be used in the parameter
estimation instead of the gradient search method to avoid
convergence to local minima. However, the computation
burden of parameter estimation will increase. To avoid
local minima and high computation cost, the first few iter-
ates (1 or 2) can utilize a global optimization method,
while the remaining iterations can implement a gradient
search algorithm. Due to the iterative nature of the
approach, errors in parameter estimates can be tolerated
as the corrections will be made in the next iteration with
the optimal experiment. The optimal measurement selec-
tion is performed by a brute force search in this work. For
very large systems the computation burden for this
process grows exponentially. Computationally efficient

Table 1: Experimental procedures used in model identification 
for the caspase system. Both receptor and stress signals are 
increased from zero to their maximum value in 30 minutes after 
which they are held constant (units same as in Varner model 
[7]).

Maximum receptor 
signal

Maximum stress 
signal

Preliminary Experiment 0.24 0
Optimal Experiment 0.09 0.045
Test Experiment 0.15 0.030

Table 2: Measurement sets for the SRP estimator for the caspase 
system.

States measured

Optimal set 2 3 5 7 10 11 12
Suboptimal set 2 3 4 5 7 10 12
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algorithms for optimal measurement selection [34] can be
used. Efficient measurement selection algorithms and the
decoupling of parameter estimation for individual reac-
tion rates into separate optimization problems result in
good scalability properties of the proposed algorithm for
large scale systems. One limitation of the approach is that
it is dependent on the weights in Equation 15 for the min-
imization of the cellular resources. The choice of weights
used in this work has provided accurate results but it
requires information of the order of magnitude of the
concentrations and rates of the system under study [44].
Efficient schemes for determining the weights for meta-
bolic networks has been developed by Varner and co-
workers [49].

Conclusion
An iterative methodology for model identification from
experimental data is developed in this paper.
Identifiability tests are performed for an optimal measure-
ment set selection for a given experimental design. The

optimal measurements represent maximum information
such that the model identification process is maximally
benefitted. The model identification process is decoupled
into two parts. In the first, the measurements are used to
estimate all the unmeasured quantities of the system. This
is achieved using the State Regulator Problem (SRP) for-
mulation which is based on the assumption that the cell
is an optimal strategist and uses its resources in an opti-
mal manner. The SRP algorithm developed in this work
has shown promising results. The average errors in the
estimates for a significant fraction of the unmeasured
responses is less than 10%. The accuracy of the estimates
obtained by the SRP decreases with decrease in the infor-
mation content due to suboptimal measurement set. In
the second part, the full state and rate estimates are used
to determine the model parameters. The decoupling
relaxes considerable computation burden compared to
estimating all model parameters simultaneously from the
limited measurements. In the final step, a model-based
experiment design determines the optimal experimental

Table 3: Confidence intervals for the model parameters of the caspase system. Case 1: suboptimal experiment with optimal 
measurement set; Case 2: suboptimal experiment with suboptimal measurement set; Case 3: optimal experiment with suboptimal 
measurement set.

No. Case 1 Case 2 Case 3

CI % E CI % E CI % E
1 1.05 ± 0.25 23.31 1.05 ± 0.26 24.43 0.55 ± 0.04 07.18
2 1.65 ± 0.06 03.69 1.65 ± 0.06 03.50 0.95 ± 0.02 02.20
3 0.52 ± 0.01 02.45 0.52 ± 0.01 02.45 0.29 ± 0.04 15.53
4 1.69 ± 6e-3 00.34 1.69 ± 5e-3 00.32 1.69 ± 0.54 32.23
5 0.62 ± 0.01 01.81 0.62 ± 0.01 01.81 0.62 ± 0.14 22.38
6 NI - NI - NI -
7 NI - NI - NI -
8 0.87 ± 0.11 12.51 0.87 ± 0.11 12.48 1.33 ± 0.18 13.28
9 0.91 ± 0.25 27.87 0.91 ± 0.87 95.69 0.75 ± 0.44 57.85
10 0.15 ± 2e-3 01.49 0.15 ± 2e-3 01.49 0.09 ± 6e-4 00.70
11 0.23 ± 8e-3 03.39 0.23 ± 0.02 06.67 0.23 ± 0.04 17.69
12 2.12 ± 0.56 26.23 2.12 ± 0.59 27.59 17.8 ± 1.60 08.99
13 0.13 ± 2e-3 01.18 0.13 ± 2e-3 01.17 0.10 ± 8e-4 00.81
14 NI - NI - NI -
15 NI - NI - 14.7 ± 4.39 30.55
16 NI - NI - 128 ± 30.8 24.03
17 NI - NI - NI -
18 NI - NI - NI -
19 NI - NI - 127 ± 3.38 2.66
20 NI - NI - NI -
21 (3.21 ± 0.06) × 1e3 01.76 (3.21 ± 3.14) × 1e3 97.51 (3.22 ± 1.16) × 1e3 36.05
22 NI - NI - NI -
23 NI - NI - NI -
24 NI - NI - NI -
25 NI - NI - (3.09 ± 1.05) 33.95
26 0.79 ± 0.12 14.57 0.79 ± 0.12 14.52 1.04 ± 0.22 21.07
27 8.65 ± 0.31 03.60 NI - 8.62 ± 3.62 42.04
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procedure that generates the most informative measure-
ments for the next iteration. A strong dependence is
observed between parameter identifiability and model
performance. Thus, it is critical that the experiment design
and measurement set be chosen such that maximum
number of parameters are identifiable.

Tools developed for quantitative analysis of the dynamics
of cellular pathways have tremendous potential in
improving the predictive capabilities of biological systems
especially in cases where experimental data is available
but the kinetic parameters of the pathway reactions are

unknown. The model developing tools are used for a host
of applications and systems analysis.

The measurement selection algorithm presented in this
work is freely available as part of a model analysis and
development toolkit, BioSens [50].

Methods
Measurement set selection
The measurement selection analysis is performed using
the "initial" parameter set for the "preliminary" experi-
mental conditions shown in Table 1. A sampling time of
5 minute is assumed for a total simulation time of 100

Profiles of the 19 protein concentrations for the caspase systemFigure 5
Profiles of the 19 protein concentrations for the caspase system. Solid line: actual system; dashed line: estimate by the SRP 
algorithm with the suboptimal experiment with suboptimal measurement set (first iteration)
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minutes. Using the orthogonal procedure [19], the non-
identifiable parameters are eliminated (13 of the 27
parameters). Perturbations of the non-identifiable param-
eters have no noticeable effect upon system dynamics for
the given experimental protocol or have a strong correla-
tion with the perturbation of one or more identifiable
parameters. The non-identifiable parameters include the
rate constants for auto-activation of the procaspases
(parameters 5 and 6). The auto-activation is orders of
magnitude lower compared to the activation by initiator.

The small contribution of the auto-activation cannot be
independently captured by the measurements and hence
leads to non-identifiability. All other non-identifiable
parameters are reaction saturation constants; the dynam-
ics of which are not captured by the measurements at 5
minute sampling time for the given measurement noise.
Equation 8 is used to estimate a bound on the confidence
interval of the identifiable parameters and the deviation
from the nominal value is calculated using Equation 9. A
measurement set of 7 protein concentrations is assumed

Profiles of the 11 reaction rates for the caspase systemFigure 6
Profiles of the 11 reaction rates for the caspase system. Solid line: actual system; dashed line: estimate by the SRP algorithm 
with the suboptimal experiment with suboptimal measurement set (first iteration)
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to be available. No measurements of the reaction rates are
available. The choice of the measurement set was such
that the maximum confidence was obtained for the iden-
tifiable parameters. The choice was made by a rigorous
brute force search among all possible combinations. The

optimal measurement set is shown in Table 2 and the con-
fidence intervals are shown in Table 3. All the identifiable
parameters have a confidence window with percentage
error less than 30%. Further reduction in the percentage
errors would require assuming more measurements in

Table 4: Estimation error for the protein concentrations in caspase system.

Protein (xi) First iterationa Second iterationb Second iterationc

Max. Avg. Max. Avg. Max. Avg. 

1 08.93 01.91 08.93 01.91 08.93 01.91
2 12.49 04.74 10.54 03.55 12.04 04.32
3 03.64 01.38 04.02 01.31 03.27 01.40
4 02.16 00.82 02.38 00.78 01.94 00.83
5 14.63 03.95 12.46 03.35 13.87 03.62
6 11.54 02.47 11.54 02.47 11.54 02.47
7 09.04 02.58 07.48 02.07 08.47 02.27
8 51.10 10.65 12.65 04.40 51.63 11.24
9 05.11 01.46 05.11 01.58 05.09 01.49
10 10.22 04.18 08.45 02.35 09.02 03.65
11 48.30 09.41 07.79 02.74 50.75 10.49
12 18.56 02.76 17.67 02.59 18.19 02.69
13 22.27 14.66 22.10 15.40 13.13 03.45
14 15.00 03.21 15.00 03.21 15.00 03.21
15 12.04 02.58 12.04 02.58 12.04 02.58
16 07.02 01.50 07.02 01.50 07.02 01.50
17 21.00 04.50 21.00 04.50 21.00 04.50
18 08.42 01.80 08.42 01.80 08.42 01.80
19 19.00 04.07 19.00 04.07 19.00 04.07

a suboptimal experiment with suboptimal measurement set
b suboptimal experiment with optimal measurement set
c optimal experiment with suboptimal measurement set

Table 5: Estimation error for the reaction rates in caspase system.

Reaction rate (ri) First iterationa Second iterationb Second iterationc

Max. Avg. Max. Avg. Max. Avg. 

1 98.97 15.98 103.3 15.91 67.05 14.14
2 49.09 05.68 48.76 05.68 45.11 06.54
3 30.86 11.60 30.46 11.64 29.49 11.93
4 225.9 14.86 38.71 18.08 221.1 16.25
5 34.32 10.44 33.49 09.79 33.87 10.30
6 61.73 38.69 66.30 41.42 65.93 38.27
7 79.40 37.65 80.00 38.12 81.26 37.20
8 35.03 10.47 36.67 10.75 36.03 11.34
9 112.1 38.78 109.9 37.32 112.5 36.55
10 34.50 17.92 36.56 17.92 29.43 10.44
11 76.59 62.44 72.72 60.33 29.76 10.03

a suboptimal experiment with suboptimal measurement set
b suboptimal experiment with optimal measurement set
c optimal experiment with suboptimal measurement set

Exi
Exi

Exi
Exi

Exi
Exi

Eri Eri Eri Eri Eri Eri
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addition to the current 7 measurements, a faster sampling
of the available measurements or a new experimental
protocol.

Model identification
1st iteration
The "preliminary" experiment (Table 1) with a subopti-
mal measurement set (Table 2) is used for obtaining the

Table 6: Error in the model predictions for the protein concentrations using the "initial" parameters, the estimated parameters after 
the first iteration, and the estimated parameters after second iteration for the "test" experiment of the caspase system.

(xi) Initial parameters First iterationa Second iterationb Second iterationc

Max. Avg. Max. Avg. Max. Avg. Max. Avg. 

1 11.21 02.26 05.66 01.14 02.54 00.51 12.04 02.43
2* 38.08 15.37 16.42 07.58 15.92 06.44 06.02 04.55
3* 90.59 16.37 72.90 09.57 78.27 09.91 32.07 02.11
4* 53.58 09.69 45.41 05.91 40.71 04.19 15.79 01.31
5* 75.88 27.09 21.47 13.56 16.54 02.81 06.40 03.96
6 01.74 00.35 04.82 00.97 04.76 00.96 05.52 01.11
7* 69.30 31.54 15.13 09.34 08.36 02.43 02.87 01.35
8 40.52 30.01 21.11 05.55 20.80 04.79 14.21 03.94
9 16.20 10.53 01.95 00.83 10.05 02.95 03.01 01.99

10* 56.81 38.13 17.30 06.43 12.93 05.32 15.92 03.01
11* 47.03 34.93 24.23 06.28 18.50 03.95 05.18 03.79
12* 66.80 36.63 07.88 03.04 13.61 04.96 12.22 06.98
13 53.52 39.26 22.14 14.01 22.25 13.75 04.66 02.79
14 11.13 02.24 04.75 00.96 17.06 03.44 15.18 03.06
15 11.69 02.36 07.36 01.48 03.80 00.77 07.90 01.59
16 05.84 01.18 00.72 00.15 06.79 01.37 04.65 00.94
17 10.47 02.11 09.19 01.85 03.77 00.76 14.38 02.90
18 10.61 02.14 07.92 01.60 08.75 01.77 05.66 01.14
19 13.13 02.65 17.94 03.62 09.46 01.91 01.10 00.22

asuboptimal experiment with suboptimal measurement set
bsuboptimal experiment with optimal measurement set
coptimal experiment with suboptimal measurement set
*measured protein concentration for the invalidation test

Table 7: Error in the model predictions for the reaction rates using the "initial" parameters, the estimated parameters after the first 
iteration, and the estimated parameters after second iteration for the "test" experiment of the caspase system.

(ri) Initial parameters First iterationa Second iterationb Second iterationc

Max. Avg. Max. Avg. Max. Avg. Max. Avg. 

1 76.90 08.74 39.88 04.68 39.23 04.08 15.83 03.08
2 90.69 07.75 80.38 05.66 74.15 05.66 48.14 02.59
3 98.85 59.01 48.39 10.98 39.17 03.33 07.83 02.33
4 92.70 39.32 72.30 11.25 63.99 08.22 20.95 05.45
5 77.79 46.55 14.52 04.71 14.38 07.99 12.95 08.80
6 87.73 60.74 43.40 10.46 43.64 09.30 26.27 07.14
7 32.22 20.58 3.92 01.57 12.40 05.10 05.13 03.52
8 74.11 23.75 28.21 13.53 23.36 09.19 11.27 04.83
9 65.88 37.41 33.29 20.39 14.47 09.46 24.21 12.18
10 100.0 53.42 100.00 16.39 100.0 04.53 06.00 04.87
11 36.65 16.09 80.79 53.88 79.09 55.00 13.76 08.04

asuboptimal experiment with suboptimal measurement set
bsuboptimal experiment with optimal measurement set
coptimal experiment with suboptimal measurement set

Eri Eri Eri Eri Eri Eri Eri Eri

Eri Eri Eri Eri Eri Eri Eri Eri
Page 15 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:155 http://www.biomedcentral.com/1471-2105/6/155
estimates of the unknown concentration and reaction rate
trajectories using the SRP algorithm. The sampling time is
taken to be 5 minutes with a prediction horizon of 4. A
higher prediction horizon showed no appreciable change
in the estimates. The initial condition of the protein con-
centrations is assumed to be equal to the corresponding
"actual" system corrupted by up to 25% relative error.
Measurements are obtained from the "actual" system with
up to 10% noise. The tolerance of the concentration
measurements (14) is taken to be 5%. Figures 5 and 6
show estimated versus "actual" profiles for protein and
reaction rate trajectories respectively.

The estimation error is determined by calculating the dif-
ference between the estimated and "actual" value for a
rate/state at time k scaled by the maximum value over the
entire simulation. Equation 22 shows the estimation error
for concentration (the equation for reaction rates is
identical). The scaling is done with respect to the maxi-
mum value in order to prevent misleading analysis at low
concentrations or reaction rates:

The estimation errors (Equation 22) are given in Tables 4
and 5. Overall, it is observed that the estimates are fairly
accurate and the system dynamics are captured. The aver-
age errors are less than 15% for all the state estimates and

for most of the reaction rate estimates. Poor estimates,
especially during the initial sampling times are mainly
caused by the mismatch in the initial conditions. Further,
the noise in the measurements results in fluctuations in
some of the estimates. It should be noted that the estima-
tion errors would not be available in real situations
because the "actual" profiles are unknown. These are
included here as a proof of concept.

The estimates are then used to determine the model
parameters by solving the optimization problem in Equa-
tion 18. The optimization to determine the parameters is
a nonlinear program for the caspase system in which the
model equations for the reaction rates are nonlinear with
respect to the parameters. The nonlinear optimization is
solved using the MATLAB routine fmincon which employs
a gradient descent search method. As a starting point for
the search, the "initial" parameter values are used. The
optimization is solved for each reaction rate separately to
obtain all the parameters in the model equations. Figures
3 and 4 compare the prediction profiles of the protein
concentration and the reaction rates obtained with the
estimated parameters with the "actual" profiles. These
profiles are for an experiment condition ("test" conditions
in Table 1) that is different from the one used for model
identification. As a model invalidation test, the prediction
errors are calculated using Equation 20. A threshold of
35% for the maximum error and 10% for the average error
can be considered to be stringent. Figure 7 shows the
result for the measured protein concentrations. It is
observed that after the first iteration, the threshold is

Maximum and average prediction errors for the measured protein concentrationsFigure 7
Maximum and average prediction errors for the measured protein concentrations. Case 1: first iteration (suboptimal experi-
ment with suboptimal measurement); Case 2: second iteration (suboptimal experiment with optimal measurements); Case 3: 
second iteration (optimal experiment with suboptimal experiment). The measured protein concentrations are (A) FAS/FASL 
complex; (B) FADD; (C) FAS/FASL-FADD complex; (D) cytochrome c; (E) Apaf-1-cytochrome c complex; (F) executioner 
procaspase; (G) caspase-8; (H) caspase-9.
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violated by the errors in the predictions of the FADD, FAS/
FASL-FADD complex, and the cytochrome c. Tables 6 and
7 show the prediction errors for all the protein concentra-
tions and reaction rates using the estimated parameters
and also the "initial" parameters set. Again it is important
to note that all these would not be available but are
included here as a proof of concept.
2nd iteration
The second iteration is performed in two ways suggested
in Figure 2. The first case involves using suboptimal exper-
iment design with the optimal measurement set; whereas,
the second case uses the optimal experiment with the
suboptimal measurements. The model obtained after the
first iteration is used to identify the optimal experiment
that generate maximum information. For the selection of
the optimal experiment design it is assumed that the
measurement set remains unchanged. For the caspase
system, the receptor and stress signals are parameterized
such that both signals start at time 0 with constant rate
injections reaching the maximum level in 30 minutes. The

design variables are the final levels of the receptor and
stress signals of the caspase activation. The search was
constrained over a range of 0–0.4 for the receptor signal
and 0–0.05 for the stress signal. A brute force search
results in an optimal experiment (Table 1) with maximum
information content for 18 identifiable parameters. The
confidence interval for the identifiable parameters (Equa-
tion 8) and the deviations from the "nominal" parameter
values (Equation 9) are shown in Table 3. Here it should
be noted that the "nominal" parameters are the values
obtained after the first iteration. The optimal levels for the
signals suggest an optimal experiment with low receptor
concentrations and high stress signal.
In each of the two cases, the model identification proce-
dure is repeated in a similar manner as in the first itera-
tion. The errors in the estimates of the protein
concentrations and the reaction rates for both cases are
shown in Tables 4 and 5 respectively. It is observed that
the optimal measurement set improves the estimates of
the states for which the information content increases. For
example, the optimal measurement set includes caspase-8
(state 11), a state that is not included in the suboptimal
measurements. The measurement of the caspase-8
improves the estimates of both the caspase-8 (state 11)

Caspase-dependent apoptosis mechanismFigure 8
Caspase-dependent apoptosis mechanism. The model 
includes two triggers for the activation of cell suicide mecha-
nism, extracellular death ligand and stress-related factor [7]. 
The cell death occurs when executioner caspase is activated 
by caspase-8 (ligand effector) or caspase-9 (stress-related 
effector).

procaspase-8

caspase-8

m itochondrial
cytochrom e-ccytochrom e-c

p53

Bcl-2 Bcl-xl Bax,Bik,Bad

Apaf1

procaspase-9 caspase-9

Bcl-xl,
ARC

executioner
procaspase

executioner
caspase

IAP

stress

ligand

apoptosis

FAS/FASL

FADD

Table 8: Nomenclature in caspase-dependent apoptosis model.

No. Protein complex name No. Protein complex name

1 total receptor ligands 11 caspase-8
2 clustered FAS/FASL complex 12 caspase-9
3 FADD 13 executioner caspase
4 FAS/FASL-FADD complex 14 decoy protein
5 cytochrome c 15 decoy protein
6 Apaf-1 16 decoy protein
7 Apaf-1-cytochrome c complex 17 activator protein
8 procaspase-8 18 Bcl-2
9 procaspase-9 19 Bcl-xL
10 executioner procaspase

Table 9: Parameter values in caspase-dependent apoptosis 
model.

No. Parameter No. Parameter No. Parameter No. Parameter

1 kl 8 k83a 15 KH 22 KK
2 ka 9 k93a 16 KI 23 KL
3 kh 10 αCE 17 KJ 24 KN
4 k8za1 11 ku 18 KC 25 KO
5 k9za1 12 KS 19 KD 26 KP
6 k8za2 13 KA 20 KF 27 KR
7 k9za2 14 KB 21 KG
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and the procaspase-8 (state 8). The estimates are used to
refine the parameter estimates using Equation 19.

Figure 7 shows the maximum and average prediction
errors for the measured concentrations for the "test"
experiment for the two cases in the second iteration. With
the optimal measurements, although the overall errors are
reduced, the threshold values are still violated. However,
the predictions with parameters obtained from the
optimal experiment reduce all the errors below the thresh-
old. This support the termination of the iterative process
with an acceptable model. The model prediction for all
the concentrations and reaction rates for the "test" experi-
ment are shown in Figures 3 and 4 and the prediction
errors in Tables 6 and 7.
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Appendix
The model of the caspase activated apoptosis proposed by
Varner and co-workers [7] consists of 19 states (protein
concentrations) and 11 reaction rates. Figure 8 gives the
schematic of the apoptosis mechanism.

The model Equations can be represented as:

where xi denotes the ith protein concentration, rj denotes
the jth reaction rate, Ωk denotes the rate of synthesis of the
protein k and µ denotes the protein complex degradation
rate. The reaction rates are as follows:

where

Tables 8 and 9 represent the nomenclature of the protein
complexes and parameter values in the apoptosis model,
respectively [7].
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