Skip to main content
. 2025 Feb 17;32(Pt 2):442–456. doi: 10.1107/S1600577525000359

Table 2. Evaluative comparison across deep learning based, classical and our proposed methods on the simulated foam phantom (Pelt et al., 2022), LoDoInd (Shi et al., 2024) and real-world experimental dataset TomoBank (De Carlo et al., 2018). Performance metrics, specifically PSNR / SSIM, are averaged across all slices and highlighted in bold for the best outcomes. Classical methods include an additional post-processing step before reconstruction, with parameters optimized on training data. All methods were designed to have similar numbers of trainable parameters for the same network architecture and were trained for a consistent number of epochs to ensure fairness in comparison.

Parameters       MBIR/Kazantsev Münch Miqueles Vo  
I0 / Pring / Pzinger Corrupted Post-proc. Sinogram proc. Followed by post-proc. Ours
Dataset: foam (512, 512, 512)
30 / 0.1 / 0.001 1.14 / 0.23 19.55 / 0.70 17.97 / 0.44 19.24 / 0.70 19.72 / 0.71 20.34 / 0.72 20.37 / 0.71 21.80 / 0.76
100 / 0.1 / 0.001 4.07 / 0.27 21.10 / 0.69 19.58 / 0.51 21.81 / 0.75 22.26 / 0.76 23.70 / 0.77 23.57 / 0.78 24.24 / 0.79
100 / 0.1 / 0 4.97 / 0.29 22.67 / 0.77 19.63 / 0.51 23.00 / 0.77 22.39 / 0.76 23.32 / 0.77 23.38 / 0.77 24.41 / 0.79
100 / 0.2 / 0 3.04 / 0.26 22.21 / 0.76 19.59 / 0.51 22.50 / 0.76 22.25 / 0.75 22.78 / 0.76 23.20 / 0.77 24.09 / 0.78
100 / 0 / 0.002 5.58 / 0.29 23.10 / 0.77 19.66 / 0.51 24.26 / 0.78 23.86 / 0.77 24.87 / 0.79
 
Dataset: LoDoInd (2000, 1250, 1250)
500 / 0.1 / 0.001 5.91 / 0.21 36.30 / 0.91 36.22 / 0.90 36.11 / 0.91 36.93 / 0.92 36.93 / 0.92 36.50 / 0.91 38.65 / 0.93
 
Dataset: TomoBank (2160, 2560, 2560)
NA 17.77 / 0.24 35.64 / 0.77 35.33 / 0.77 35.53 / 0.77 35.77 / 0.78 35.79 / 0.78 35.81 / 0.78 36.55 / 0.79