Skip to main content
. 2025 Feb 25;15:1491843. doi: 10.3389/fonc.2025.1491843

Table 3.

The best-performing classifiers among various deep models.

Model Best-performing classifier AUC 95% CI Sensitivity Specificity PPV NPV
ViT MLP train 0.80 0.74-0.85 0.59 0.86 0.78 0.71
test 0.78 0.67-0.89 0.50 0.79 0.67 0.66
VGG16 MLP train 0.85 0.80-0.90 0.66 0.82 0.76 0.74
test 0.79 0.67-0.90 0.75 0.79 0.75 0.79
ShuffleNet_v2 SVM train 0.92 0.89-0.95 0.79 0.92 0.89 0.84
test 0.81 0.70-0.92 0.55 0.92 0.84 0.71
ResNet18 MLP train 0.87 0.82-0.91 0.77 0.81 0.77 0.80
test 0.87 0.78-0.96 0.83 0.74 0.73 0.83
MobileNet_v2 MLP train 0.83 0.78-0.88 0.63 0.85 0.78 0.73
test 0.74 0.62-0.87 0.62 0.79 0.72 0.71
MnasNet-0.5 LightGBM train 0.92 0.89-0.96 0.75 0.91 0.88 0.81
test 0.75 0.63-0.88 0.41 0.88 0.75 0.64
GoogleNet SVM train 0.93 0.90-0.96 0.74 0.91 0.88 0.81
test 0.80 0.68-0.91 0.62 0.77 0.69 0.70
DenseNet121 SVM train 0.96 0.94-0.98 0.70 0.80 0.75 0.76
test 0.75 0.63-0.87 0.62 0.77 0.69 0.70
AlexNet MLP train 0.87 0.82-0.91 0.73 0.88 0.84 0.80
test 0.84 0.73-0.94 0.72 0.88 0.84 0.79