Table 3.
The summary of statistical analysis.
| Model | Run Time | R-squared | MAPE | MAE | MSE | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Training | Validation | Testing | Training | Validation | Testing | Training | Validation | Testing | Training | Validation | Testing | ||
| SVM | 0.0094 | 0.9579 | 0.9562 | 0.9593 | 16.3489 | 16.6465 | 40.6545 | 0.0407 | 0.0408 | 0.0361 | 0.0024 | 0.0024 | 0.0021 |
| MLP | 10.6822 | 0.9506 | 0.9447 | 0.9455 | 15.1776 | 18.2716 | 24.8411 | 0.0437 | 0.0458 | 0.0407 | 0.0029 | 0.0030 | 0.0028 |
| CNN | 15.7672 | 0.9855 | 0.9841 | 0.9773 | 7.4173 | 7.2048 | 21.8950 | 0.0229 | 0.0248 | 0.0270 | 0.0008 | 0.0008 | 0.0011 |
| Ensemble learning | 0.0217 | 0.9953 | 0.9917 | 0.9934 | 5.4496 | 6.2881 | 15.7982 | 0.0135 | 0.0163 | 0.0141 | 0.0002 | 0.0004 | 0.0003 |
| RF | 0.0407 | 0.9992 | 0.9982 | 0.9982 | 1.5013 | 2.6194 | 4.5270 | 0.0048 | 0.0081 | 0.0073 | 0.0000 | 0.0001 | 0.0001 |
| KNN | 0.0005 | 1.0000 | 0.9798 | 0.9880 | 0.0000 | 5.8111 | 5.9151 | 0.0000 | 0.0191 | 0.0149 | 0.0000 | 0.0011 | 0.0006 |
| DT | 0.0163 | 1.0000 | 0.9988 | 0.9985 | 0.0000 | 2.8254 | 4.6935 | 0.0000 | 0.0071 | 0.0077 | 0.0000 | 0.0001 | 0.0001 |
| Adaptive boosting | 0.2623 | 0.9574 | 0.9520 | 0.9477 | 16.3788 | 19.3579 | 36.6926 | 0.0419 | 0.0441 | 0.0442 | 0.0025 | 0.0026 | 0.0027 |