Skip to main content
. 2025 Feb 15;15(2):754–768. doi: 10.62347/XKFN1793
Objective: To predict the classification type as benign or malignant
Input: Segmented image features (|R|)
Output: Classification predictions (yi )
1: Feature extraction using Improved GLCM (I-GLCM)
2: Compute mean (μ) using Eq. (13)
3: Compute standard deviation (τ) using Eq. (14)
4: Compute contrast using Eq. (15)
5: Compute dissimilarity using Eq. (16)
6: Initialize U-Net architecture
7: for each time step t do
8: Calculate update gate zt using Eq. (18)
9: Calculate reset gate rt using Eq. (19)
10: Calculate the candidate’s hidden state kt using Eq. (20)
11: Update hidden state kt using Eq. (21)
12: Generate classification predictions:
13: for each output unit i do
14: Compute predictions yi using ReLU activation on the final hidden state kt
15: end for
16: return Classification predictions (yi )