Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Apr;398:291–311. doi: 10.1113/jphysiol.1988.sp017043

Voltage-gated sodium and calcium currents in rat osteoblasts.

D Chesnoy-Marchais 1, J Fritsch 1
PMCID: PMC1191773  PMID: 3392674

Abstract

1. The whole-cell voltage-clamp mode of the patch-clamp technique was used to investigate the presence of voltage-gated inward currents in osteoblasts from newborn rat calvaria. 2. In K+-free solutions, three kinds of inward currents could be activated by depolarization: a voltage-gated Na+ current and two different types of Ca2+ currents. 3. The Na+ current was activated by depolarization above -40 mV in all the cells. It was reduced by half by 10 nM-TTX (tetrodotoxin). 4. In an isotonic Ba2+ external solution containing TTX, and with a Cs-EGTA internal solution buffered at pCa 8, depolarizing jumps induced both a transient Ba2+ current and a sustained Ba2+ current. The relative proportions of these two currents varied greatly among cells. 5. The transient and sustained Ba2+ currents differ with respect to their time course and their voltage dependence. 6. The depolarization-activated inward currents were also observed under more physiological conditions, in the presence of only 2 mM-external Ca2+ and with a K+ internal solution buffered at pCa 7. 7. A few records obtained in current clamp showed that it is possible to induce action potentials in osteoblasts.

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Matteson D. R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science. 1985 Jan 4;227(4682):65–67. doi: 10.1126/science.2578071. [DOI] [PubMed] [Google Scholar]
  2. Beam K. G., Knudson C. M., Powell J. A. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature. 1986 Mar 13;320(6058):168–170. doi: 10.1038/320168a0. [DOI] [PubMed] [Google Scholar]
  3. Bean B. P. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985 Jul;86(1):1–30. doi: 10.1085/jgp.86.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan S., Chiu S. Y., Gray P. T., Ritchie J. M. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1985 Sep 23;225(1240):299–313. doi: 10.1098/rspb.1985.0063. [DOI] [PubMed] [Google Scholar]
  5. Boland C. J., Fried R. M., Tashjian A. H., Jr Measurement of cytosolic free Ca2+ concentrations in human and rat osteosarcoma cells: actions of bone resorption-stimulating hormones. Endocrinology. 1986 Mar;118(3):980–989. doi: 10.1210/endo-118-3-980. [DOI] [PubMed] [Google Scholar]
  6. Bossu J. L., Feltz A. Patch-clamp study of the tetrodotoxin-resistant sodium current in group C sensory neurones. Neurosci Lett. 1984 Oct 12;51(2):241–246. doi: 10.1016/0304-3940(84)90558-5. [DOI] [PubMed] [Google Scholar]
  7. Byerly L., Yazejian B. Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol. 1986 Jan;370:631–650. doi: 10.1113/jphysiol.1986.sp015955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cahalan M. D., Chandy K. G., DeCoursey T. E., Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol. 1985 Jan;358:197–237. doi: 10.1113/jphysiol.1985.sp015548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carbone E., Lux H. D. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol. 1987 May;386:547–570. doi: 10.1113/jphysiol.1987.sp016551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chambers T. J. The cellular basis of bone resorption. Clin Orthop Relat Res. 1980 Sep;(151):283–293. [PubMed] [Google Scholar]
  11. Chiu S. Y., Schrager P., Ritchie J. M. Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature. 1984 Sep 13;311(5982):156–157. doi: 10.1038/311156a0. [DOI] [PubMed] [Google Scholar]
  12. Cognard C., Lazdunski M., Romey G. Different types of Ca2+ channels in mammalian skeletal muscle cells in culture. Proc Natl Acad Sci U S A. 1986 Jan;83(2):517–521. doi: 10.1073/pnas.83.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cohen C. J., Bean B. P., Colatsky T. J., Tsien R. W. Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. Interactions between toxin binding and channel gating. J Gen Physiol. 1981 Oct;78(4):383–411. doi: 10.1085/jgp.78.4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cota G. Calcium channel currents in pars intermedia cells of the rat pituitary gland. Kinetic properties and washout during intracellular dialysis. J Gen Physiol. 1986 Jul;88(1):83–105. doi: 10.1085/jgp.88.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeCoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol. 1985 Nov;10(1):71–95. doi: 10.1016/0165-5728(85)90035-9. [DOI] [PubMed] [Google Scholar]
  16. Decoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Mitogen induction of ion channels in murine T lymphocytes. J Gen Physiol. 1987 Mar;89(3):405–420. doi: 10.1085/jgp.89.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dziak R., Stern P. H. Calcium transport in isolated bone cells. III. Effects of parathyroid hormone and cyclic 3',5'-AMP. Endocrinology. 1975 Nov;97(5):1281–1287. doi: 10.1210/endo-97-5-1281. [DOI] [PubMed] [Google Scholar]
  18. Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
  19. Edelman A., Fritsch J., Balsan S. Short-term effects of PTH on cultured rat osteoblasts: changes in membrane potential. Am J Physiol. 1986 Oct;251(4 Pt 1):C483–C490. doi: 10.1152/ajpcell.1986.251.4.C483. [DOI] [PubMed] [Google Scholar]
  20. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Frelin C., Lombet A., Vigne P., Romey G., Lazdunski M. Properties of Na+ channels in fibroblasts. Biochem Biophys Res Commun. 1982 Jul 16;107(1):202–208. doi: 10.1016/0006-291x(82)91689-8. [DOI] [PubMed] [Google Scholar]
  23. Fukushima Y., Hagiwara S., Saxton R. E. Variation of calcium current during the cell growth cycle in mouse hybridoma lines secreting immunoglobulins. J Physiol. 1984 Oct;355:313–321. doi: 10.1113/jphysiol.1984.sp015421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fukushima Y., Hagiwara S. Voltage-gated Ca2+ channel in mouse myeloma cells. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2240–2242. doi: 10.1073/pnas.80.8.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gallego R. The ionic basis of action potentials in petrosal ganglion cells of the cat. J Physiol. 1983 Sep;342:591–602. doi: 10.1113/jphysiol.1983.sp014870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  27. Hagiwara S., Kawa K. Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules. J Physiol. 1984 Nov;356:135–149. doi: 10.1113/jphysiol.1984.sp015457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  29. Hof R. P., Hof A., Ruegg U. T., Cook N. S., Vogel A. Stereoselectivity at the calcium channel: different profiles of hemodynamic activity of the enantiomers of the dihydropyridine derivative PN 200-110. J Cardiovasc Pharmacol. 1986 Mar-Apr;8(2):221–226. doi: 10.1097/00005344-198603000-00001. [DOI] [PubMed] [Google Scholar]
  30. Jones S. J., Boyde A. Experimental study of changes in osteoblastic shape induced by calcitonin and parathyroid extract in an organ culture system. Cell Tissue Res. 1976 Jul 6;169(4):499–465. doi: 10.1007/BF00218146. [DOI] [PubMed] [Google Scholar]
  31. Jones S. J., Ness A. R. A study of the arrangement of osteoblasts of rat calvarium cultured in medium with, or without, added parathyroid extract. J Cell Sci. 1977 Jun;25:247–263. doi: 10.1242/jcs.25.1.247. [DOI] [PubMed] [Google Scholar]
  32. Lieberherr M. Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J Biol Chem. 1987 Sep 25;262(27):13168–13173. doi: 10.1515/9783110846713.769. [DOI] [PubMed] [Google Scholar]
  33. Löwik C. W., van Leeuwen J. P., van der Meer J. M., van Zeeland J. K., Scheven B. A., Herrmann-Erlee M. P. A two-receptor model for the action of parathyroid hormone on osteoblasts: a role for intracellular free calcium and cAMP. Cell Calcium. 1985 Aug;6(4):311–326. doi: 10.1016/0143-4160(85)90002-8. [DOI] [PubMed] [Google Scholar]
  34. MacVicar B. A. Voltage-dependent calcium channels in glial cells. Science. 1984 Dec 14;226(4680):1345–1347. doi: 10.1126/science.6095454. [DOI] [PubMed] [Google Scholar]
  35. Marcus R., Orner F. B. Parathyroid hormone as a calcium ionophore in bone cells: tests of specificity. Calcif Tissue Int. 1980;32(3):207–211. doi: 10.1007/BF02408543. [DOI] [PubMed] [Google Scholar]
  36. Matteson D. R., Armstrong C. M. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 1986 Jan;87(1):161–182. doi: 10.1085/jgp.87.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McSheehy P. M., Chambers T. J. Osteoblast-like cells in the presence of parathyroid hormone release soluble factor that stimulates osteoclastic bone resorption. Endocrinology. 1986 Oct;119(4):1654–1659. doi: 10.1210/endo-119-4-1654. [DOI] [PubMed] [Google Scholar]
  38. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  39. Narahashi T., Tsunoo A., Yoshii M. Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol. 1987 Feb;383:231–249. doi: 10.1113/jphysiol.1987.sp016406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Newman E. A. Voltage-dependent calcium and potassium channels in retinal glial cells. 1985 Oct 31-Nov 6Nature. 317(6040):809–811. doi: 10.1038/317809a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  42. Nowak L., Ascher P., Berwald-Netter Y. Ionic channels in mouse astrocytes in culture. J Neurosci. 1987 Jan;7(1):101–109. doi: 10.1523/JNEUROSCI.07-01-00101.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  44. Perry H. M., Skogen W., Chappel J. C., Wilner G. D., Kahn A. J., Teitelbaum S. L. Conditioned medium from osteoblast-like cells mediate parathyroid hormone induced bone resorption. Calcif Tissue Int. 1987 May;40(5):298–300. doi: 10.1007/BF02555265. [DOI] [PubMed] [Google Scholar]
  45. Puzas J. E., Brand J. S. Parathyroid hormone stimulation of collagenase secretion by isolated bone cells. Endocrinology. 1979 Feb;104(2):559–562. doi: 10.1210/endo-104-2-559. [DOI] [PubMed] [Google Scholar]
  46. Rodan G. A., Martin T. J. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–351. doi: 10.1007/BF02409454. [DOI] [PubMed] [Google Scholar]
  47. Schlichter L., Sidell N., Hagiwara S. K channels are expressed early in human T-cell development. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5625–5629. doi: 10.1073/pnas.83.15.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schlichter L., Sidell N., Hagiwara S. Potassium channels mediate killing by human natural killer cells. Proc Natl Acad Sci U S A. 1986 Jan;83(2):451–455. doi: 10.1073/pnas.83.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schramm M., Thomas G., Towart R., Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature. 1983 Jun 9;303(5917):535–537. doi: 10.1038/303535a0. [DOI] [PubMed] [Google Scholar]
  50. Shrager P., Chiu S. Y., Ritchie J. M. Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):948–952. doi: 10.1073/pnas.82.3.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weiss R. E., Horn R. Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science. 1986 Jul 18;233(4761):361–364. doi: 10.1126/science.2425432. [DOI] [PubMed] [Google Scholar]
  52. Yaari Y., Hamon B., Lux H. D. Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science. 1987 Feb 6;235(4789):680–682. doi: 10.1126/science.2433765. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES