Skip to main content
. 2025 Mar 18;27(3):e70017. doi: 10.1111/jch.70017

TABLE 3.

Comparison of the predictive value of various machine learning models and actual cf‐PWV and baPWV for survival time and outcome events using the Cox proportional hazards model.

−2 Log Likelihood Chi‐square df Sig.
Actual_baPWV 4379.680 9.918 1 0.003
Actual_cf‐PWV 5069.810 17.882 1 0.000
SVR_cf‐PWV 906.595 4.278 1 0.039
RF_cf‐PWV 917.286 5.585 1 0.018
LR_cf‐PWV 520.956 8.206 1 0.004
KNN_cf‐PWV 1027.156 4.387 1 0.036
GB_cf‐PWV 869.209 3.965 1 0.046
20%_Actual_baPWV 768.779 0.730 1 0.402
20%_Actual_cfPWV 520.671 8.625 1 0.003

Note: SVR_cf‐PWV, RF_cf‐PWV, LR_cf‐PWVKNN_cf‐PWV, and GB_cf‐PWV represent cf‐PWV prediction by different machine learning models, Actual_cf‐PWV and Actual_baPWV are the value of cf‐PWV and baPWV measured by an instrument. The dataset used for this comparison includes 20% of the actual baPWV values (20%_Actual_baPWV) and 20% of the actual cf‐PWV values (20%_Actual_cfPWV). This table summarizes the performance of five machine learning models in predicting cf‐PWV values, assessed using the Cox proportional hazards model. It lists statistical indicators such as ‐2 Log Likelihood, Chi‐square, df, and Sig.