Skip to main content
. 2025 Mar 5;8:1546398. doi: 10.3389/frai.2025.1546398

Table 1.

Model names and hyperparameter tuning settings.

Model name Hyperparameters for model
Random forest regressor
  • ‘n estimators’: [100, 300, 500]

  • ‘max features’: [‘auto’, ‘sqrt’, ‘log2’]

  • ‘max depth’: [None, 10, 20, 30]

  • ‘min samples split’: [2, 5, 10]

  • ‘min samples leaf’: [1, 2, 4]

  • ‘bootstrap’: [True, False]

XGBoost
  • ‘learning rate’: [1, 0.1, 0.01, 0.001]

  • ‘n estimators’: [100, 500, 1,000]

  • ‘max depth’: [3, 5, 8]

  • ‘subsample’: [0.7, 1]

  • ‘colsample bytree’: [0.7, 1]

  • ‘min child weight’: [1, 5, 10]

  • ‘gamma’: [0, 0.1, 0.2]

Support vector regressor
  • ‘C′: [1, 10, 100, 1,000]

  • ‘gamma’: [1, 0.1, 0.01, 0.001, 0.0001]

  • ‘kernel’: [‘rbf’]

  • ‘epsilon’: [0.1, 0.01, 0.001]

  • ‘shrinking’: [True, False]

GAN
  • ‘latent dim’: [5, 10, 20]

  • ‘epochs’: [200, 500, 1,000]

  • ‘batch size’: [16, 32, 64]

  • ‘learning rate’: [0.0002, 0.0001, 0.00005]

  • ‘beta 1’: [0.5, 0.9]

  • ‘beta 2’: [0.999, 0.9999]

  • ‘activation function’: [‘LeakyReLU’, ‘ReLU’, ‘Sigmoid’]