Random forest regressor |
‘n estimators’: [100, 300, 500]
‘max features’: [‘auto’, ‘sqrt’, ‘log2’]
‘max depth’: [None, 10, 20, 30]
‘min samples split’: [2, 5, 10]
‘min samples leaf’: [1, 2, 4]
‘bootstrap’: [True, False]
|
XGBoost |
‘learning rate’: [1, 0.1, 0.01, 0.001]
‘n estimators’: [100, 500, 1,000]
‘max depth’: [3, 5, 8]
‘subsample’: [0.7, 1]
‘colsample bytree’: [0.7, 1]
‘min child weight’: [1, 5, 10]
‘gamma’: [0, 0.1, 0.2]
|
Support vector regressor |
‘C′: [1, 10, 100, 1,000]
‘gamma’: [1, 0.1, 0.01, 0.001, 0.0001]
‘kernel’: [‘rbf’]
‘epsilon’: [0.1, 0.01, 0.001]
‘shrinking’: [True, False]
|
GAN |
‘latent dim’: [5, 10, 20]
‘epochs’: [200, 500, 1,000]
‘batch size’: [16, 32, 64]
‘learning rate’: [0.0002, 0.0001, 0.00005]
‘beta 1’: [0.5, 0.9]
‘beta 2’: [0.999, 0.9999]
‘activation function’: [‘LeakyReLU’, ‘ReLU’, ‘Sigmoid’]
|