Skip to main content
. 2025 Mar 5;8:1546398. doi: 10.3389/frai.2025.1546398

Table 2.

Optimal hyperparameters.

Model name Optimal hyperparameters
Random forest regressor
  • ‘n estimators’: [100]

  • ‘max features’: [‘sqrt’, ‘log2’]

  • ‘max depth’: [20]

  • ‘min samples split’: [2]

  • ‘min samples leaf’: [1]

  • ‘bootstrap’: [False]

XGBoost
  • ’learning rate’: [0.1]

  • ‘n estimators’: [500]

  • ‘max depth’: [3]

  • ‘subsample’: [1]

  • ‘colsample bytree’: [1]

  • ‘min child weight’: [1]

  • ‘gamma’: [0]

Support Vector Regressor
  • ’C′: [1000]

  • ‘gamma’: [0.1, 1]

  • ‘kernel’: [‘rbf’]

  • ‘epsilon’: [0.1]

  • ‘shrinking’: [True]

GAN
  • ‘latent dim’: [10]

  • ‘epochs’: [1000]

  • ‘batch size’: [16]

  • ‘learning rate’: [0.0002]

  • ‘beta 1’: [0.5, 0.9]

  • ‘beta 2’: [0.999, 0.9999]

  • ‘activation function’: [‘LeakyReLU’, ‘ReLU’, ‘Sigmoid’]