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SUMMARY

1. The A 1 noradrenergic neurones are known to project from the caudal ventro-
lateral medulla to the vasopressin-secreting neuroendocrine cells in the hypo-
thalamus. They therefore represent a possible central pathway from the medulla
to the hypothalamus for baroreceptor-initiated secretion of vasopressin.

2. We tested this hypothesis in the anaesthetized rabbit. Muscimol, a y-
aminobutyric-acid-receptor agonist, was injected into the caudal ventrolateral
medulla to inhibit the A 1 noradrenergic neurones.

3. Secretion of vasopressin, measured by radioimmunoassay, was initiated either
by arterial haemorrhage or by constriction of the inferior vena cava.

4. After injection ofvehicle into the caudal ventrolateral medulla, or after injection
of muscimol into nearby control areas, both haemorrhage and constriction of the
inferior vena cava produced the expected elevation in plasma vasopressin.

5. After injection of muscimol into the caudal ventrolateral medulla, secretion of
vasopressin in response to haemorrhage and to constriction of the inferior vena cava,
was completely abolished.

6. The A 1 noradrenergic neurones may be the sole pathway transmitting the
reflex for baroreceptor-initiated secretion of vasopressin from the medulla to the
hypothalamus.

INTRODUCTION

Vasopressin is secreted from the neurohypophysis following haemorrhage or severe
hypotension, a reflex originating from baroreceptors within the atria and great vessels
(Share, 1974; Wang, Sundet, Hakumaki & Goetz, 1983). Afferent fibres in the IXth
and Xth cranial nerves convey baroreceptor information to the nucleus tractus
solitarius, whence it reaches vasopressin-secreting neuroendocrine cells in the hypo-
thalamus by an as yet undefined pathway (Clark & Rocha E Silva, 1967; Yamashita
& Koizumi, 1979; Kalia & Mesulam, 1980; Spyer, 1982). The caudal ventrolateral
medulla contains the A1 noradrenergic neurones (P1. 1) which project directly to
vasopressin-secreting cells in the supraoptic and paraventricular nuclei (McKellar &
Loewy, 1981; Sawchenko & Swanson, 1982; Blessing, Jaeger, Ruggiero & Reis, 1982).
The nucleus tractus solitarius is known to project to the caudal ventrolateral medulla
(Loewy & Burton, 1978; Ricardo & Koh, 1978; Sawchenko & Swanson, 1982), so that
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the pathway mediating baroreceptor-initiated secretion of vasopressin may include
neurones in this region.

Functional studies support this suggestion. Neurones in the ventrolateral medulla
with projections to the hypothalamus are affected by baroreceptor-derived input
(Ciriello & Caverson, 1984a, b). Excitatory agents applied to the caudal area elevate
plasma vasopressin (Bisset, Feldberg, Guertzenstein & Rocha E Silva, 1975; Feldberg
& Rocha E Silva, 1978; Sved, Blessing & Reis, 1985). Inhibitory agents, applied to
the same area, prevent the release of vasopressin normally seen after carotid occlusion
(Feldberg & Rocha E Silva, 1981). Although lesioning the AI cell bodies in the rabbit
increases plasma vasopressin (Blessing, Sved & Reis, 1982), subsequent studies have
shown that this is due to an initial excitatory effect of the lesions (Blessing &
Willoughby, 1985a, b). Although some electrophysiological studies show that micro-
ionophoretically applied noradrenaline inhibits magnocellular neurones (Barker,
Crayton & Nicoll, 1971; Moss, Urban & Cross, 1972; Arnauld, Cirino, Layton &
Renaud, 1983) more recent studies have demonstrated a convincing excitatory effect
(Day & Renaud, 1984; Day, Ferguson & Renaud, 1984; Tanaka, Kaba, Saito & Seto,
1984; Kannan, Yamashita & Osaka, 1984).

In the present study we have tested the hypothesis that one of the functions of A 1
noradrenergic neurones is to act as an excitatory link in the central pathway
mediating the secretion of vasopressin in response to haemorrhage and hypotension.
We have done this by measuring the baroreceptor-initiated secretion of vasopressin
after inhibiting neuronal function in the caudal ventrolateral medulla using local
application of muscimol, a long acting y-aminobutyric-acid-receptor agonist
(Johnston, Curtis, de Groat & Duggan, 1968; DeFeudis, 1980).

METHODS

Animal and surgical procedures
Male New Zealand White rabbits (2-3 kg) were used. They were housed with free access to food

and water, and were transferred to the laboratory in small cages in which they remained while
experiments without general anaesthesia were performed. Preparatory surgical procedures were
carried out under halothane anaesthesia, one to two weeks before experiments. Experimental
studies in anaesthetized animals were carried out under urethane (1-4 g/kg), infused over 30 min
into a marginal ear vein. After establishment of anaesthesia, the rabbit was intubated and
mechanically ventilated with oxygen-enriched air after muscle relaxation with curare (0 75 mg/kg).
Rectal temperature was maintained at 38 'C.

In the preliminary operation, in some animals, an inflatable-cuff constrictor was placed around
the inferior vena cava, just above the diaphragm (Korner, Shaw, West & Oliver, 1972). Tubing,
connected to the cuff, was left subcutaneously in a dorsal position, from which it could subsequently
be retrieved. By graded inflation ofthe cuff it was possible to reduce venous return, thereby lowering
atrial filling and systemic arterial pressure.
Experiments on the medulla oblongata were performed under anaesthesia with the head fixed

in a Kopf stereotaxic holder. The medulla was exposed by incision and retraction of the
atlanto-occipital membrane, without affecting the occipital bone or the cerebellum. The degree
ofneck flexion was adjusted so that the dorsal surface of the medulla was horizontal. The medullary
surface was covered in warm Ringer solution.

Measurement of arterial pre&sure, heart rate and blood ga8 ten8ion8
Arterial pressure and heart rate were recorded on a Grass Model 7 Polygraph via a Statham P23

ID pressure transducer connected to a catheter in the central ear artery (unanaesthetized animals)
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or in the femoral artery (anaesthetized animals). Mean arterial pressure was obtained by
electronically damping the phasic signal and heart rate (heart rate) obtained from the pulse wave
with a Grass Model 7P4F tachograph. Arterial blood gases were measured on 1 ml samples using
an IL 513 pH/Blood Gas Analyser (Lexington, MA).

Measurement of plasma vasopressin
Blood (1-3 ml) for assay of vasopressin was obtained from the arterial catheter and replaced

immediately by warm Ringer solution. Samples were heparinized, stored on ice and centrifuged
within 3 hours. The resulting plasma was stored at -20 C until assay. Concentrations of
vasopressin were determined by radioimmunoassay, using an antibody supplied by Dr J. D.
Fernstrom, Pittsburg, U.S.A., following extraction from plasma by cation exchange chromato-
graphy (Van Itallie & Fernstrom, 1982). Recovery after extraction was 75-100%. Vasopressin for
iodination was purchased from Bachem (California). Bound and free vasopressin were separated
using polyethylene glycol. The sensitivity of the assay was 1-128 pg/tube, and the intra- and
interassay variabilities were 13% and 14% respectively. The assay failed to detect oxytocin at a
concentration of 32 pg/tube and crossreacted 2-5% with 64 pg/tube oxytocin.

Intramedullary injections
Stereotaxic injections were made through long, fine, glass micropipettes with bevelled tips (o.d.

50 jsm). The experimental site, where A 1 neurones are located (Blessing, Chalmers & Howe, 1978),
was 1 mm caudal to the rostral border of the area postrema, 3 mm lateral to the midline and 3 mm
below the dorsal surface of the medulla. Control sites (P1. 1) were either 2-5 mm dorsal or 1-5 mm
medial to the experimental site. Muscimol hydrochloride (Sigma), 1 nmol per 0-2 #l of Ringer
solution, was injected bilaterally in approximately 2 s. The Ringer solution contained 0.1 %
horseradish peroxidase (Sigma) to mark the centre of the injection site. Micropipettes were removed
1 min after injection.

Experimental protocol
Unanaesthetized rabbits - inferior vena cava constriction. A central ear artery cannula was inserted

and the subcutaneous tubing for cuff inflation located. After a 15 min rest period, control values
for mean arterial pressure, heart rate and plasma vasopressin were obtained. The inferior vena cava
cuff was then inflated for 60 or 90 s, using sufficient inferior vena cava constriction to reduce mean
arterial pressure by 20-70 mmHg. Plasma vasopressin was measured 1 and 5 min after deflation
of the cuff. After results from these pilot experiments were obtained, we performed further
experiments in which the inferior vena cava cuff was inflated to a degree sufficient to reduce mean
arterial pressure by at least 30 mmHg for 3 min. Arterial blood gases were measured during the
last 15 s of the constriction period and mean arterial pressure, heart rate and plasma vasopressin
were measured 1 and 5 min after cuff deflation.

Anaesthetized rabbits- inferior vena cava constriction. Control values for mean arterial pressure,
heart rate, plasma vasopressin and blood gases were obtained after surgical preparation. Either
Ringer solution (0-2,l) or muscimol (1 nmol in 0-2,1 of Ringer solution) was then injected
bilaterally into the caudal ventrolateral medulla. Cardiovascular variables and plasma vasopressin
were reassessed after 5 min. The cuff constrictor was then inflated for 3 min. A sample for blood
gas assessment was obtained during the final 15 s. Plasma vasopressin was measured 1 and 5 min
after cuff deflation.

Anaesthetized rabbits - haemorrhage. Rabbits without inferior vena cava cuffs were used. Control
values were obtained for all variables and then either vehicle or muscimol was injected into the
caudal ventrolateral medulla. In additional control experiments, muscimol (1 nmol) was injected
into either the dorsal or the medial site (P1. 1). Variables were reassessed after 5 min. Blood was
then withdrawn from the femoral artery (15-20 ml/kg) to reduce mean arterial pressure to
approximately 40 mmHg. This procedure occupied approximately 3 min. Blood gas analysis was
performed on the last blood removed. Plasma vasopressin was measured after a further 2-5 min.
The blood was then returned to the rabbit to ensure survival for histological analysis of the injection
site.
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Hi8tological analy8i8
Accurate localization of microinjections was confirmed at the conclusion of each experiment by

perfusing the animal with fixative and processing the brain for catecholamine fluorescence
histochemistry (Blessing et al. 1978), horseradish peroxidase activity and for Nissl substance. Some
sections, from other rabbits, not injected with peroxidase, were processed for tyrosine hydroxylase
immunoreactivity (PI. 1 C), using an antibody provided by Dr T. H. Joh, New York, U.S.A. The
antiserum was used at a dilution of 1 in 5,000 and the sections processed using the avidin-
biotin-peroxidase procedure (Vectastain, CA).

RESULTS

Control levels of plasma vasopressin
Resting plasma vasopressin values were invariably less than 10 ng/l in unanaes-

thetized rabbits (mean 4+ 2 ng/l, n = 23). Approximately 10% of urethane-
anaesthetized rabbits had control levels greater than 20 ng/l. We excluded all data
from these animals from further analysis. Elevated resting vasopressin levels were
likely to occur if the anaesthetic was infused too rapidly or if transient hypotension
occurred during surgical procedures.

Plasma vasopressin after constriction of the inferior vena cava and blood gas analysis
In pilot experiments we varied the duration and degree of constriction of the

inferior vena cava, recording the fall in mean arterial pressure and the rise in heart
rate during constriction, and measuring plasma vasopressin levels 1 and 5 min after
cessation of constriction. The unanaesthetized rabbits rested quietly in their cages
during these procedures. Constriction periods of 60, 90 and 180 s all increased plasma
vasopressin. The 5 min level was approximately 40% of the 1 min level, in both
unanaesthetized rabbits and in anaesthetized rabbits subjected to 180 s of inferior
vena cava constriction (Fig. 1). This is consistent with published values of approxi-
mately 4 min for the plasma half-life of vasopressin (Lauson, 1974), indicating that
vasopressin secretion ceased promptly after restoration of venous return through the
inferior vena cava, in both unanaesthetized and anaesthetized rabbits.
For the 90 s constriction period, in unanaesthetized rabbits, we systematically

adjusted the degree of balloon inflation to produce graded falls in mean arterial
pressure. This resulted in a significant relationship between the fall in mean arterial
pressure and the subsequent post-constriction value for plasma vasopressin (Fig. 2),
a relationship also present in anaesthetized rabbits after injection of vehicle into the
caudal ventrolateral medulla.
Both inferior vena cava constriction and arterial haemorrhage caused a metabolic

acidosis, without a major change in pH because a degree of respiratory alkalosis
developed. Hypoxaemia was never observed.
These results suggest that the constriction stimulus used resulted in secretion of

vasopressin by a baroreceptor-mediated mechanism.

Inferior vena cava constriction in anaesthetized rabbits after intra-medullary injections
Injection of Ringer solution into the caudal ventrolateral medulla did not affect

mean arterial pressure, heart rate or plasma vasopressin (Fig. 3). Subsequent
constriction of the inferior vena cava for 3 min reduced mean arterial pressure and
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Fig. 1. Relationship between plasma vasopressin (AVP) values obtained 1 and 5 min after
ceasing constriction of the inferior vena cava (i.v.c.). Data are from unanaesthetized
rabbits (constriction for 60, 90 or 180 s) and from anaesthetized rabbits after injection
of vehicle into the caudal ventrolateral medulla (constriction for 180 s). Linear regression
was significant (R = 0-91, P < 0-01).
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Fig. 2. Relationship between fall in mean arterial pressure (M.A.P.) and plasma vasopressin
measured 1 min after ceasing constriction of the inferior vena cava. The inferior vena cava
was constricted for 90 s in unanaesthetized rabbits (@) and for 3 min in anaesthetized
rabbits after injection of either vehicle (0) or muscimol (A) into the caudal ventrolateral
medulla (c.v.l.m.). Linear regression was significant for both the unanaesthetized rabbits
(R = 0 90, P < 0 01) and for the anaesthetized rabbits after injection of vehicle (R = 0-92,
P < 005). For muscimol-injected animals there was little or no increase in plasma
vasopressin for any fall in mean arterial pressure.
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Fig. 3. A, effect of injection of muscimol (1 nmol) into the caudal ventrolateral medulla,
on secretion of vasopressin secondary to constriction of the inferior vena cava (mean +5S.E.
Of mean). B and C, corresponding results for mean arterial pressure (M.A.P.) and heart rate
(H.a.). Number of rabbits in each group is shown in parentheses. *, significantly different
from the corresponding value immediately before inferior vena cava constriction,
P c 005, paired t test. **", significantly different from the corresponding value immediately
before inferior vena cava constriction, P < 0G01, paired t test. tt, significantly different
from the corresponding value before injection of muscimol, P < 0 0t, paired t test.

increased heart rate (Fig. 3), as also occurred in the unanaesthetized rabbits. One
minute after cessation of inferior vena cava constriction, plasma vasopressin had
increased from 6+2 to 67+12 ng/l (Fig. 3). By 5 mmn this value had decreased to
45+ 11 ng/l.

Injection of muscimol into the caudal ventrolateral medulla elevated mean arterial
pressure without changing plasma vasopressin or heart rate (Fig. 3). Subsequent
inferior vena cava constriction caused the expected fall in mean arterial pressure and
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increase in heart rate, but plasma vasopressin remained entirely unchanged from
pre-constriction values (Fig. 3). Constriction of the inferior vena cava in vehicle and
muscimol injected groups caused similar falls in mean arterial pressure (50+10 and
49+10 mmHg respectively) and rises in heart rate (60+16 and 42+13 beats/mmn)
but the final mean arterial pressure was slightly higher in the muscimol-injected group
(72 ± 9 compared to 54 ± 9 mmHg), because mean arterial pressure was higher in this
group immediately before inferior vena cava constriction. Maximal inferior vena cava
constriction readily reduced arterial pressure to levels as low as 30 mmHg in
vehicle-injected rabbits. In muscimol-injected animals it was usually impossible to
reduce pressure below 60 mmHg even with maximal inferior vena cava constriction.
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However, analysis of results for individual rabbits in the muscimol-injected group
(Fig. 2) revealed no relationship between fall in mean arterial pressure and subsequent
plasma vasopressin. Indeed the muscimol-injected animal with the most effective
hypotensive stimulus (mean arterial pressure falling from 138 to 40 mmHg) had no
detectable rise in plasma vasopressin (Fig. 2).

Haemorrhage in anaesthetized rabbits after intra-medullary injections
Injection of Ringer solution into the caudal ventrolateral medulla or injection of

muscimol into dorsal and medial control sites did not alter mean arterial pressure,
heart rate or plasma vasopressin (Fig. 4). After arterial haemorrhage in these rabbits,
plasma vasopressin increased to over 100 ng/l (Fig. 4). Injection of muscimol into
the caudal ventrolateral medulla increased mean arterial pressure without change in
plasma vasopressin (Fig. 4). Before haemorrhage, plasma vasopressin was 4+1 ng/l.
After haemorrhage it was 9+ 3 ng/l, not significantly changed from the pre-
haemorrhage value (P > 0 05, paired t test). The level of mean arterial pressure after
haemorrhage was 44+ 6 mmHg, not significantly different from the corresponding
level in the control group (39+ 7 mmHg, P > 0 05, t test for independent means). To
reduce mean arterial pressure to basal levels, it was necessary to remove more blood
(20 ml/kg) from the muscimol-injected animals than from the vehicle-injected
animals (15 ml/kg).

DISCUSSION

The results presented show that injection of muscimol into the caudal ventrolateral
medulla prevents the release of vasopressin normally seen after haemorrhage or
hypotension. The medullary region where muscimol had this effect was shown to be
restricted. Injections dorsal or medial to the caudal ventrolateral medulla did not
affect the release of vasopressin. The effective site includes A 1 noradrenergic neurones
and, as can be seen in P1. 1, these cells and their dendritic processes correspond with
the injected region.

Inhibition of vasopressin secretion by application of y-aminobutyric-acid-receptor
agonists to the caudal ventrolateral medulla is in accord with increases in the level
of this hormone observed after blockade of the same receptors with bicuculline
(Feldberg & Rocha E Silva, 1978; Sved, Blessing & Reis, 1985). These two results,
taken together, suggest that A 1 neurones stimulate vasopressin-secreting cells and,
in turn, are themselves tonically inhibited by a y-aminobutyric-acid-containing
input. The latter may well derive from cell bodies in the nucleus tractus solitarius
(Blessing, Oertel & Willoughby, 1984).
We used reasonably physiological methods to produce baroreceptor-initiated

secretion ofvasopressin. We were careful to maintain arterial oxygen tension, thereby
minimizing the chemoreceptor stimulation which would be induced by carotid
occlusion, as used by Feldberg & Rocha E Silva (1981). Changes in cerebral blood
flow, secondary to haemorrhage and reduced venous return, presumably would be
similar in both our control and our experimental groups.
We again observed an increase in arterial pressure following activation of y-

aminobutyric acid receptors in the caudal ventrolateral medulla, in agreement with
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previous studies in the rabbit (Blessing & Reis, 1982, 1983) and the rat (Willette,
Kreiger, Barcas & Sapru, 1983). This finding differs from that of Feldberg and his
collaborators. Although Feldberg & Guertzenstein (1976) described a caudal nicotine-
sensitive vasodepressor area on the ventral surface of the medulla of the cat, no
increase in arterial pressure was detected when y-aminobutyric acid was applied to
this region (Feldberg & Rocha E Silva, 1981), nor did bicuculline cause dramatic
hypotension (Feldberg & Rocha E Silva, 1978), as occurs in the rabbit and the rat
(Blessing & Reis, 1983; Willette, Barcas, Kreiger & Sapru, 1984). Recent work in the
cat, using glutamate-induced excitation, has re-emphasized the importance of the
caudal vasodepressor area (McAllen & Woollard, 1983). Guertzenstein & Lopes (1984)
have shown that inhibition of the caudal region with pentobarbitone elevates arterial
pressure and it is likely that neuroactive amino acids will also prove to have reciprocal
effects on vasomotor tone and plasma vasopressin in this species.
Our findings indicate that inhibition of a discrete region in the caudal ventrolateral

medulla prevents excitation of vasopressin-secreting neurones in the hypothalamus
and produces excitation of vasomotor neurones in the spinal cord. Excitation of the
same medullary region has the converse effect. The identity of the neurones
responsible for the vasomotor effects remains an open question. Projection areas of
A l cells do not include the spinal cord (Blessing, Goodchild, Dampney & Chalmers,
1981; Westlund, Bowker, Zeigler & Coulter, 1983), so that these cells could only
influence spinal vasomotor centres by an indirect, presently unknown, route. In
contrast, the well-documented hypothalamic projection of A 1 neurones means that
these are the cells likely to be responsible for the regulation of plasma vasopressin.
Over 80 %, and possibly all, of the neurones in the caudal ventrolateral medulla with
direct projections to the hypothalamus belong to the A 1 group (Sawchenko &
Swanson, 1982; Blessing, Jaeger et al. 1982). The studies of Day & Renaud (1984)
and Day et al. (1984) show that 6-hydroxydopamine-induced destruction of nor-
adrenergic nerve terminals in the supraoptic and paraventricular nuclei abolishes
neuroexcitation of the neurosecretory neurones produced by stimulating the caudal
ventrolateral medulla. Moreover, interruption of noradrenergic axons in the pons
interferes with secretion of vasopressin in response to haemorrhage (Lightman, Todd
& Everitt, 1984). Finally, application of noradrenaline to the supraoptic nucleus
releases vasopressin into the circulation, apparently by activation of an alpha 1
adrenoceptor (Milton & Paterson, 1974; Urano & Kobayashi, 1978; Willoughby,
Jervois, Menadue & Blessing, 1985).

Our results do not exclude the possibility ofalternative inputs to the A 1 cells. Bisset
& Chowdrey (1984) emphasize the importance, for vasopressin secretion, of a nicotinic
receptor located on neurones in the caudal ventrolateral medulla. These authors
propose that this receptor is located on cholinergic cells which project from the caudal
ventrolateral medulla to the hypothalamus. However, available anatomical studies
show that the only cholinergic neurones in the region belong to the vagal preganglionic
group in the nucleus ambiguus (Kimura, McGeer, Peng & McGeer, 1981; Armstrong,
Saper, Levey, Wainer & Terry, 1983). Furthermore, the hypothesis is difficult to
reconcile with the results of the 6-hydroxydopamine experiments described above.
Because A 1 noradrenergic neurones appear to excite the neurosecretory cells, the
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results of Bisset and Chowdrey could equally well be explained by postulating that
the nicotinic receptors are on A 1 cells.

Alternative inputs to the vasopressin-secreting cells are known to come from the
median preoptic nucleus, with connexions from the circumventricular organs
(Miselis, Shapiro & Hand, 1979). Circulating angiotensin is believed to activate
neurones in the circumventricular organs but evidence suggests that this system plays
little part in the release of vasopressin in response to haemorrhage (Wang et al. 1983;
Feuerstein, Johnson, Zerbe, Davis-Kramer & Faden, 1984). The A2 noradrenergic

Baroreceptors
Ixx ~~~~Noradrenaline

/ - C~~~~~A AVP

Fig. 5. Schematic outline of the hypothesized central neural pathways and transmitter
agents mediating the baroreceptor-initiated secretion of vasopressin. The scheme is not
intended to exclude alternative projections, either inhibitory or excitatory, from the
nucleus tractus solitarius to the A 1 cells. Abbreviations: n.t.s., nucleus tractus solitarius;
s.o.n.-p.v.h., supraoptic and paraventricular nuclei.

neurones, within the nucleus tractus solitarius, project directly to the hypothalamus,
but not to the vasopressin-secreting neuroendocrine cells (Sawchenko & Swanson,
1982).
Thus the central pathway for baroreceptor-mediated secretion of vasopressin may

be that shown in Fig. 5, as first suggested, in more general terms, by Feldberg & Rocha
E Silva (1981). The complete prevention ofvasopressin release observed in the present
study implies that neurones in the caudal ventrolateral medulla are essential,
excitatory elements in the pathway transmitting the baroreceptor-initiated vaso-

pressin--secretion reflex from the medulla to the hypothalamus. The A 1 noradrenergic
cells are likely to be the neurones involved.
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EXPLANATION OF PLATE

A, photomicrograph of Nissl stain of rabbit caudal ventrolateral medulla. The rostro-caudal level,
1 mm caudal to the anterior border of the area postrema, is at the level of the exiting hypoglossal
nerve rootlets and thus corresponds with the caudal, nicotine-sensitive, depressor area described
in the cat. The dark area is horseradish peroxidase reaction product, indicating the centre of the
injection site and the direction of spread. The size of the area depended on the concentration of
horseradish peroxidase included in the injection. Bar = 0-6 mm. B, diagrammatic representation
of the experimental site in the caudal ventrolateral medulla and the two control injection sites,
dorsal and medial to the experimental site. C, photomicrograph of tyrosine hydroxylase immuno-
reactive cell bodies and dendritic processes located in the region shown by the rectangle in A,
demonstrating that A 1 neurones are located in the centre of the injection site. Bar = 100 um. D,
photomicrograph of the same region from a different animal, stained for Nissl substance. By
comparing C and D one can verify that the A 1 neurones occur in the region between the caudal
cells of the nucleus ambiguus and the lateral reticular nucleus. Bar = 100 lm. Abbreviations: A.p.,
area postrema; Lo., inferior olive; L.r.n., lateral reticular nucleus; N.a., nucleus ambiguus; N.t.s.,
nucleus tractus solitarius; Vs., spinal nucleus of the trigeminal nerve; XII, hypoglossal nucleus.

265


