Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Jul;352:339–352. doi: 10.1113/jphysiol.1984.sp015295

Self-generated electrical currents through Xenopus neurulae.

K R Robinson, R F Stump
PMCID: PMC1193215  PMID: 6747892

Abstract

An extracellular vibrating electrode has been used to investigate epithelial current production by Xenopus neurulae. Xenopus neurulae, in 5% DeBoer (DB) solution, stages 14-22, generated an endogenous current which left the blastopores of the embryos, and entered all other locations. The inward current declined near the mid line of the neural groove in stage 15 embryos. The inward current was abolished or drastically reduced by exchange of 5% DB with Na+-free (choline- or bis(2-hydroxyethyl)dimethylammonium (BDAC)-substituted) 5% DB, 5.5 mM-KCl, 1 mM-verapamil in 5% DB, 50 or 500 microM-ouabain in 5% DB, or 1 microM-amiloride in 5% DB. Verapamil (10 microM) in 5% DB, 5.5 mM-NaCl and 1 mM-CoCl2 in 5% DB had little or no effect on the magnitude observed. The current also was present in 5% DB containing Li+ instead of Na+; current carried by Li+ was abolished by amiloride. This is consistent with a Na+ current, similar to that of short-circuited adult frog skin.

Full text

PDF
339

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. C., Schroeder T. E. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev Biol. 1967 May;15(5):432–450. doi: 10.1016/0012-1606(67)90036-x. [DOI] [PubMed] [Google Scholar]
  2. Betz W. J., Caldwell J. H., Ribchester R. R., Robinson K. R., Stump R. F. Endogenous electric field around muscle fibres depends on the Na+-K+ pump. Nature. 1980 Sep 18;287(5779):235–237. doi: 10.1038/287235a0. [DOI] [PubMed] [Google Scholar]
  3. Blackshaw S. E., Warner A. E. Alterations in resting membrane properties during neural plate stages of development of the nervous system. J Physiol. 1976 Feb;255(1):231–247. doi: 10.1113/jphysiol.1976.sp011277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackshaw S. E., Warner A. E. Low resistance junctions between mesoderm cells during development of trunk muscles. J Physiol. 1976 Feb;255(1):209–230. doi: 10.1113/jphysiol.1976.sp011276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cattell W. R., McSherry M. A., Northeast A., Powell E., Brooks H. J., O'Grady F. Periurethral enterobacterial carriage in pathogenesis of recurrent urinary infection. Br Med J. 1974 Oct 19;4(5937):136–139. doi: 10.1136/bmj.4.5937.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Decker R. S. Disassembly of the zonula occludens during amphibian neurulation. Dev Biol. 1981 Jan 15;81(1):12–22. doi: 10.1016/0012-1606(81)90343-2. [DOI] [PubMed] [Google Scholar]
  7. Decker R. S., Friend D. S. Assembly of gap junctions during amphibian neurulation. J Cell Biol. 1974 Jul;62(1):32–47. doi: 10.1083/jcb.62.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dragsten P. R., Blumenthal R., Handler J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. doi: 10.1038/294718a0. [DOI] [PubMed] [Google Scholar]
  9. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  10. Hamilton L. The formation of somites in Xenopus. J Embryol Exp Morphol. 1969 Sep;22(2):253–264. [PubMed] [Google Scholar]
  11. Hinkle L., McCaig C. D., Robinson K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol. 1981 May;314:121–135. doi: 10.1113/jphysiol.1981.sp013695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffe L. F., Poo M. M. Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool. 1979 Jul;209(1):115–128. doi: 10.1002/jez.1402090114. [DOI] [PubMed] [Google Scholar]
  14. Jaffe L. F., Stern C. D. Strong electrical currents leave the primitive streak of chick embryos. Science. 1979 Nov 2;206(4418):569–571. doi: 10.1126/science.573921. [DOI] [PubMed] [Google Scholar]
  15. Karfunkel P. The mechanisms of neural tube formation. Int Rev Cytol. 1974;38(0):245–271. doi: 10.1016/s0074-7696(08)60927-4. [DOI] [PubMed] [Google Scholar]
  16. Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev Biol. 1976 Jul 1;51(1):118–137. doi: 10.1016/0012-1606(76)90127-5. [DOI] [PubMed] [Google Scholar]
  17. Kullberg R. W., Lentz T. L., Cohen M. W. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol. 1977 Oct 1;60(1):101–129. doi: 10.1016/0012-1606(77)90113-0. [DOI] [PubMed] [Google Scholar]
  18. McCaig C. D., Robinson K. R. The ontogeny of the transepidermal potential difference in frog embryos. Dev Biol. 1982 Apr;90(2):335–339. doi: 10.1016/0012-1606(82)90382-7. [DOI] [PubMed] [Google Scholar]
  19. Schroeder T. E. Mechanisms of morphogenesis: the embryonic neural tube. Int J Neurosci. 1971 Nov;2(4):183–197. doi: 10.3109/00207457109147001. [DOI] [PubMed] [Google Scholar]
  20. Warner A. E. The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system. J Physiol. 1973 Nov;235(1):267–286. doi: 10.1113/jphysiol.1973.sp010387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woodruff R. I., Telfer W. H. Electrophoresis of proteins in intercellular bridges. Nature. 1980 Jul 3;286(5768):84–86. doi: 10.1038/286084a0. [DOI] [PubMed] [Google Scholar]
  22. Youn B. W., Keller R. E., Malacinski G. M. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians. J Embryol Exp Morphol. 1980 Oct;59:223–247. [PubMed] [Google Scholar]
  23. Youn B. W., Malacinski G. M. Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation. J Embryol Exp Morphol. 1981 Aug;64:23–43. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES